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Figure 01: This diagram presents a parallel 
between natural observation and metapictorial 
modeling: both are “pictures.” From the natural 

picture we deduct from what is seen; for the 
metapictorial we induct toward what may be 
seen. Natural observation serves as a “found-

gateway” leading to patterns revealing scientific 
knowledge. Metapictorial modeling is a “ren-

dered-gateway” revealing “dissimilated” knowl-
edge patterns (primarily, relational patterns) that 
have much higher rates of dissonance than found 
in nature. However, once generated, they perform 

retrospectively, offering insight into the “data-
nature” of the whole: exposing critical anomalies, 

and offering predictive analysis. Therefore, they 
offer deductive opportunities via navigation back 

through their own landscape generated by big 
data — toward essential discovery. 

 Natural images “behave” and render accord-
ing to the dictates of the laws of physics and a 

preexistent, “continuous math”: discoverable and 
resultant. Metapictorial images are rendered via 

invented and applied math that is fundamentally  
computational. The underlying driving force 

are myriad relational entities and the relational 
characteristics between the entities.
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INTRODUCTION

This paper presents a visualization theory 
concerning Big Data. One high-level objec-
tive for processing big data is to render models 
that will facilitate Knowledge Discovery. This 
requires investigation into the characteristics 
of what we term Big Data, as well as consider-
ations into various types of visual representa-
tions for big data. I argue that a promising 
modeling option toward achieving knowledge 
discovery from big data is through what may 
be termed (Synthetic) Metapictorial renderings.  
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BACKGROUND

Stephen G. Eick, in his introduction for Fayyad’s and 
Grinstein’s Information Visualization in Data Mining and 
Knowledge Discovery states that, “Visualization is the link 
between the two most powerful information processing 
systems: humans and the modern computer.” [Humans 
are] “easily overwhelmed by volumes of data that are now 
routinely connected. Data mining…is a natural reduction 
technique that complements human capabilities.”  
    I would not necessarily agree that we are “eas-
ily overwhelmed,” yet I would concur that persons who 
deal specifically with these kinds of massive datasets are 
certainly overtaxed to the point where any improvement in 
cognitive gain — efficiencies of knowledge discovery are to 
be very welcome. This is particularly the case in workflows 
that undertake the task of deriving new insight, intel-
ligence, or what is now termed anticipatory analysis from 
the data through the process of visualization. The origins 
of knowledge were (and are still being) derived from real 
imagery. Big data is entering a magnitude of scope that in 
many ways mimics nature’s larger systems.  
    Perhaps then, a new kind of naturalesque/synthetic 
imagery — here termed metapictorial — may be the ideal 
way to render big data, particularly to support knowledge 
discovery. The most simplified schematic comparing 
real imagery to metapictorial imagery would consider 
these three building blocks: 1) images of reality com-
pared to synthetically generated “reality-styled” imagery 
(metapictorial), 2) derived, continuous  mathematics 
against applied formulation (algorithms and computa-
tional efforts), and 3) unseen physical models compared to 
unseen relational models (Figure 01).

METAPICTORIAL IMAGERY: FINE, DESIGN, & SYNTHETIC 

The term metapictorial has been applied for differing 
purposes through its fairly infrequent usage. It sometimes 
refers to a kind of “intuitive artistic competency” in the 
image-making process.  Jožef Muhovič (Linguistic, Picto-
rial and Metapictorial Competence, Leonardo, Vol. 30, 
No. 3, pages 213–219, 1997) assigns a referencing/aesthetic 
meaning, that, he argues, transcends the figurative. It may 
be understood this way: when a competent artist renders 
interpretations of things seen in nature they may be highly 
realistic or considerably abstracted. Yet, despite this range 
of potential visual outcome something additional, yet in-
trinsic, becomes apparent through the rendering (Figure 
02). Conversely a less-competent artist (or non-artist) 
will simply capture less of what is seen — if attempts are 

made at reality they will be incompetent, if attempts are 
made for abstracted insight it will neither be achieved nor 
conveyed. 
     We can witness this in comparing children’s draw-
ings done by children (which capture the awe of discovery 
and are never purposely child-like) to an adult’s drawing 
that is supposed to be drawn as a child would draw. These 
false children’s drawings are so often dull and insipid, they 
lack the awe of the commensurate capabilities of the child. 
    In comparison to the metapictorial within the fine 
arts is the metapictorial within the design arts. Here the 
impulse is to modify the externally-real toward a more 
specific, and generally reductive representation. Please 
jump ahead to Figure 07  which illustrates this process of 
creating continually reductive renderings of bees crawl-
ing about their hives as an example of several design art 
renderings.
     This paper concerns neither fine arts nor design arts 
metapictorial renderings, instead considering the model-
ing of real kinds of pictorial images through computa-
tional means: synthetic metapictorial images. Images that 
approach the naturalistic but are not. Also, images that 
are drawn as a by-product of computation and not with 
subjective and objective intent, so to speak, of the artist. 
Regardless, they may be analyzed as one would analyze 
the natural world. In essence these synthetic metapictorial 
images may  permit  deep and immersive investigations 
of big data generated models. They may enable whole new 
realms of knowledge discovery and other beneficial utility 
in working with big data. Their essential and characteris-
tic value may be, at first, counter-intuitive; in their initial 

Figure 02: Picasso’s Guernica (1937)— an example of the 
metapictorial from the viewpoint of fine arts. The painting 
is not real imagery, yet the abstraction is hyper-informative, 
transmitting the agony of conflict which embodies the com-
position of emotion distraught, abstracted, social relation-
ships. Compare this to Figure 07, 11, & 12, which showcase 
the metapictorial from the viewpoint of the design arts.
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manifestations they would appear similar to experimental 
computer art. 
     Graphs, charts, and diagrams rely on the whitespace 
within or around their “elements areas” to convey infor-
mativeness. Photographs function another way — every 
smallest element (grains or pixels) has a corresponding 
positional and specific characteristic. If one imagines mov-
ing across a deep oceanic space the water is contiguous 
and displaced by creatures within the greater whole. Yet, 
the water is informative as well, under magnification it is 
breathtakingly rich in information itself — yet of relative 
consistency. Every molecule of water relates to its neigh-
bor, and distance-wise, through ever-less decipherable 
means, to every other molecule within the ocean. Other 
organisms within this great body of near-infinite region 
are themselves infinitely related. Unlike graphical imagery, 
where details of the whole image provide less information, 
details of synthetic metapictorial imagery, generated via 
big data, would provide more-and-more information.

PROPORTION OF HUMAN-TO-MACHINE INTERFACE 

Machine processing and machine activity is ever increas-
ing proportionate to human activity (assuming continually  
developed areas of human activity). The use of hand tools 
serve as direct extensions and augmentation of human 
capability; the interface is tactile and physical. At the next 
level a series of tools may be utilized whereby, as part of 
the process, tool acts upon neighboring tool to effect a 
desired process. Through the use of correctly applied en-
ergy within a far more complex interdependency of tools 
a human may act “remotely” to the system. This requires 
an interface of navigation and control. The tactile may 
be supplemented by voice or eye movement, or through 
increasingly non-apparent means. Ultimately the interface 
becomes as non-intrusive and intuitive as possible.  
Extending this scenario further, it is easy to comprehend 
that systems are working continually on our behalf, at 
extremely sophisticated levels, and fully unbeknownst 
to us. Figure 03 illustrates this idea in simplified linear 
manner, depicting as well, a sense of scale with the human 
activity as an ever-decreasing proportion of the whole. 
     It is easy to see why user-centric design is so much 
a part of toolset development today. It is correspondingly 
fascinating to consider that the very ease and non-intru-
siveness of the actualization of intention renders the hu-
man somewhat helpless if the systems do not “behave” as 
desired or expected. This can happen through the lack of 
proper energy, or misapplied energy to the tools (disrup-

machine activityhuman activity

human activity human activity human activity

machine activity machine activity

Figure 03: Humans within machine interfaces:
The simplest kind of interface is the use of a tool to effect 
some change against an outside system, such as a sledge-
hammer leveraging and concentrating human strength to 
shatter a rock, or as a means can to extract something from 
a system that evades typical human hand-to-eye coordina-
tion; such as  fish being “fished out” of water by line or net 
(which is a matrix of interwoven lines).
     A series of tools, when assembled into an interoperable 
framework and powered by some means, become a “ma-
chine.” In the diagram above the thick single lines represent 
tools, collected together in sequence they become machines. 
The fourth row contains integrated dense bars, these represent 
machine systems within a human environment. The base 
image diagrams vastly increased machine activity, supple-
menting human interface activity. For disinterested users, 
the simplest and least complex interfaces are desirable. For 
knowledge extraction we need to reveal the entire functional 
and relational “goings-on” within the entire system.
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tiveness), or merely poor design, maintenance, or usage. 
Interface design is generally focused on the ease by which 
desires and decisions are carried out. For knowledge dis-
covery we must unveil why these desires and decisions are 
being made. The metapictorial approach is to reveal the 
workings and interconnectedness of the human and the 
machine by analyzing the meta-information that identifies 
the (increasingly) total activity of the machines and the 
human activity within them.  
 
INFORMATION, INTERPRETATION, RESOURCE APPLICATION 

In order to render change to our environment physically; 
or to impact others through representations that encour-
age them to do so, consider this simple model. The subject, 
armed with whatever quality of information they possess, 
interprets and thus develops a commensurate capability 
or desire to act, and then summons the resources to do so. 
When students enquire of me, “what is good design?” I am 
inclined to answer (not smugly but with an aim toward dis-
cussing this model), “Good design is what good designers 
make.” So the ideal somewhere near the center of the three 
vectors: information, interpretation, and resource applica-
tion (Figure 04).
    For the human-generated model the central area is 
populated with polygons of capability, expertise, or even 
a more desirable potentiality amongst all the possibilities. 
The better outcomes are in the more centric polygons and 
the lesser outcomes are somewhat easier to achieve because 
the “area of lesser results” are larger. We use default ideas 
of good and less good, or go no-go attributes as well. There 
is no such thing as a “perfect” home run — a major league 
home run swing is no easy matter, yet the polygon of good 
includes everything that goes over the fence. Another, 
overlapping polygon would include inside-the-park home 
runs (which are the lesser but oftimes more thrilling alter-
natives). But no one needs to hit a ball 365 yards through 
a hole that is only a micron in diameter larger than the 
ball itself — that would be a pin dot polygon in the center 
of the three vectors. Along these lines we can consider 
the way humans create either fine art or design art based 
metapictorial images.  The results reach from not-so-good 
to very good indeed: ever moving into more talented, and 
increasingly smaller and more centrally boundaried poly-
gons in the model described. Capability means we move 
toward the center. Conversely, for computationally gener-
ated outcomes we move out from the center.

    Computer generated outcomes are expected to be ac-
curate and desired (and though this is not always the case, 
it is the expected and planned for result). Practical math 
demands a precise home run every time. Here, however, 
is a limitation; if a machine is built to provide the same 
precise home run time-after-time, not only will no fans 
come out to the ballfield, nothing new will be discovered. 
So discovery and “goodness” along synthetic lines means 
an ever widening scope of possibility by direct vectors to 
parallel “discoverables” — or spirals out that cover sig-
nificant comparative and contextual results — or crawls 
through vast amounts of data that build better and better 
capabilities (Figure 05). This kind of approach will also 
generate quite differing kinds of metapictorials, as would 
be expected due to the applications (algorithms and com-
putations that generate results). This would mean, however, 
that the algorithms and computations would need to be 
design (interpretation) with the intent of allowing users to 
discover new knowledge and not merely slam out home 
runs all day long.

DECISION CLUSTERS 

There are easily many hundreds, if not literally thou-
sands, of and/or choices — forks in the road — that a 
team of engineers/designers need to thoroughly inves-
tigate, analyze, and consider toward a final choice of 
visual representation(s) respecting any particular kind of 
extremely large datasets or data systems. (Legacy issues 
often mean that large areas are unfortunately structurally 
or computationally pre-ordained in terms of their design.) 
Each consideration that can be undertaken will play its part 
in the algorithm set that will process data toward revealing 
tangible, or otherwise “visible” compositions. These com-
positions, once viewed and manipulated by users, might 
continually produce re-renderings. Some re-renderings 
would be extremely subtle in their change status, however, 
the possibility for major alterations could certainly result 
from any request based upon the composition of algo-
rithms that act upon the data. For this paper I wish to focus 
on a very limited set of options — those decision trees that 
might most rapidly bring a viewer to the kind of “next-gen-
eration” visualization for big data; visualization schema in 
order to undertake intensely-effective modeling of synthetic 
knowledge. Essentially we will be driving toward a marriage 
of processing where machines and humans are ascertaining 
fabulous levels of insight — insight that causes the rebuild-
ing of decision-making tools, and in turn, modifications to 
the tools that support decision support (Figure 06).
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Design theory argues for this ideal in the decision 
making process: that each decision cluster addresses the 
larger conditional split prior to the next largest conditional 
split. A decision cluster is any number of and/or decisions 
that appear to be of similar type, or would lead down a 
similar path of variance, or would be similar in the short-
run, i.e., decisions that are small and related enough to 
each other in the current state of the program and won’t 
be of significance until later in the program. For example, 
making the choice of using blue now, and leaving the hue 
or value of that color until later (qualitative); or the choice 
of a future date in May two years from now with the actual 
date within that month to be later determined (quantita-
tive). A decision cluster could involve hundreds of future 
decisions, yet these decisions do not impact a point of 
no-return, nor the elimination of options until some 
future point in the decision making process. A decision 
split eliminates all the other options. So the argument is 
simply that the most critical, the most impacting, and the 
most far-reaching decision clusters are tackled in order of 
magnitude — that the forks in the road are very similar 
to reaching a far-away destination by using the interstate 
federal highways, then the state highways, then the county 
highways, and then the local roads in the hierarchy of 
driving. And though this generally is a default logic for 
driving, for designing this is not often the case — design 
legacies, tendencies, policies, and politics often thwart the 
seemingly “logical” approach. When this can be done the 
80/20 rule, in reverse, results. Each conditional split  

Figure 04: Human-based model — Comprehensive knowl-
edge (information), processed through interpretive skill, 
and supported via resources and physical application, effect 
change. Higher capability is depicted here by the denser cen-
trality of the polygons— each of the lighter polygons reflecting 
lessening effectiveness and capability. The fading gray areas 
represent a complete fall-off of effectiveness. The physical 
results of such change can be seen and recorded, replenishing 
the information field toward the next cycle of activity

Figure 05: Processing-based model — Information (con-
sidered through human-interpretive skills and organized 
through varied taxonomies and ontologies, but potentially re-
oriented through artificial intelligence, etc.), is rendered into 
“actionable representations” via applications. Precise and 
specific outcomes are expected (central point). Additional in-
sight is thus supported through data visualization as a result 
of:  “crawling” out in a spiraling manner from the targeted 
results (the orange cross-ticked spiral), or by vectoring out 
into other informative “conjectures,” (arrow), or processing 
through polygon-like arcs that move more randomly across 
fields of data. These latter kinds of fluid crawls through the 
data will more likely yield metapictorial results. The concen-
tric rings represent fields of varying data, with formal (solid, 
essentially quantitative) or informal (dotted, potentially 
qualitative) boundaries. Unlike the human activity which 
may move with great fluidity across ill-defined  kinds of 
information, the data within a processing model is defined, 
even if predominately qualitative.
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(if in proper sequence) covers a rapidly decreasing quan-
tity of the entirety of the potential success of the outcomes. 
Therefore, the first ten major decision clusters, if well 
conceived, applied against the first ten major conditional 
splits, will be of the magnitude of the next thousand or 
so increasingly minor decisions — so things will become 
logical and easier as the process continues. 

AREAS OF CONSIDERATION FOR VISUALIZING BIG DATA 

Following are ten areas of consideration presented in or-
der of decreasing magnitude of importance (though all are 
important), which support those kinds of visual outcomes 
generated through computational modeling (algorithms) 
of big data:  specifically, the kind computational modeling 
decisions that should also support knowledge discovery. The 
list is generalist because no specific project is herein speci-
fied — however, my generalist directive is toward effect-
ing what the title of this paper indicates, viz.,  “Big Data 
Visualization and Knowledge Discovery through Metapicto-
rial Modeling.” Therefore, I apologize in advance that some 
of these recommendations seem atypical for best practice 
development cycles, but that is precisely the point. 

1) Data emphasis: The bias toward favoring computation-
al methods vs. infrastructural directives, and how this  
impacts high level visualization models.

Figure 06:
A synthetically gener-

ated metapictorial 
image — differing kinds 

of patterns are emerg-
ing from the blue 

“ocean” of big data. The 
blue ground is not and 
absence of data, nor a 

basemap for referencing  
the emergent patterns. 
Instead, is softly repre-

sents a massive amount 
of essentially consistent 

data at this moment 
of viewing the data vi-
sualization — the tiny 

triangles are avatars 
assisting in searching 

through the data.

2) Knowledge discovery vs. decision making and  
decision support: How legacies of visual model building 
impact subsequent visualizations, and why innovation is 
stymied.

3) Specificity in design-centricity vs. user-centric  
universality : The rise in the emphasis upon user-experience 
issues and heuristics —how this approach creates an  
info-visualization bias of compromise and “chasing the users.”

4) Tangible vs. interstitial: as big data “fills” interstitial 
space why the need for “soft-data modeling” is worthy of 
consideration.

5) Taxonomic vs. ontological: how the notion of naming 
and categorization supports, or fails to corroborate with, 
the nature of the data being processes.

6) Pictorial vs. diagrammatic: Where real, synthetic, vir-
tual, or quasi-realistic kinds of images — those which are 
more cognitively “direct” — regain primacy over diagram, 
network, graphical, and symbolic imagery.

7) Physically pictorial vs. Metapictorial: Where pictorial 
imagery, generally understood to observe laws of physics 
(even in representational modeling), give way to represen-
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tational images that defy such standards as they become more abstract-
ed or “surreal” in representation.

8) Systems composition vs. engine composition: the character of 
renderings that are “map-like” and composed of continuous fields of 
display, versus compositions that are compact, concise, self-reflective, 
and of closed contextual reference; and how these latter types can be 
“dispersed” through the former (compare Figure 06 to 07, and 12 
to 11).

9) Control field vs. immersive field: how controls of the views can be 
modified by ostensibly external control methods, or through gesture 
based, immersive methods: relating to how we move through real 
worlds (intrinsic) versus libraries of knowledge (derived).

10) Symbolic vs. signified: understanding the distance from the core 
signified thing and how cultures share, or create new meanings, as 
distance of time or space move the viewer away from the signified 
elements — and the use of symbols as compacted elements of pictorial 
things.

DATA EMPHASIS: the bias toward favoring computational methods vs. 
infrastructural directives and how this impacts high level visualization 
models.

Every professional develops a bias respecting the nature of data on 
one hand and the way “raw” data is best composed as “content” on the 
other. The nature/content/display  (Figure 07) composition from 

*number varies, increasing and decreasing with warmer and colder climates.

Figure 07:
The design arts approach to 
metapictorial rendering — in this 
diagram the generally reductionist 
logic of design-based representa-
tion is shown. Unlike the fine arts 
approach to the metapictorial 
, which tends toward expres-
siveness, the design approach 
focuses on the informative. The 
upper image in the sequence is 
a photographic rendering; the 
design process might begin by 
isolating the area of interest 
within the photograph (second 
from top). The center diagram is 
simply a 1:1 reductive interpreta-
tion of the photographic image in 
question — the complexity of the 

hive is reduced to simple, albeit 
multi-shaded, hexagonal cells, 
the bees are highly simplified but 
of similar number. The fourth 
image depicts an additional layer 
of logic applied to the reductionist 
endeavor: the logic being to show 
the number of worker bees relative 
to the number of cells within the 
honeycomb. The final diagram is 
more reductionist still — the logic 
being to show the ratio of worker 
bee to number of cells to which it 
attends: one bee to 6.5 cells. Note 
that accuracy gives way to the 
quest for more rapid cognitive as-
similation of the data. 
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data determines a great deal in regard to what may later be 
derived from it. In the simplest model some application of 
“knowledge tools” upon this nature/content composition 
renders representations. The representation embodies the 
communicative, tangible outcome that may then lead the 
user to useful interpretation. In discussing the first bias of 
practitioner’s approach to big data I again turn to Fayyad, 
et al, “…two distinct camps working on two fundamental 
aspects of data mining have emerged…the first is focused 
on data storage and retrieval terminology as related to da-
tabase theory and practice. The second is centered on the 
notion of algorithmic principles that enable the detection 
or extraction of patterns and statistical models from data. 
This latter branch evolved [from]…pattern recognition, 
and later under artificial intelligence (AI) and machine 
learning (ML)…[and now] knowledge discovery in data-
bases (KDD)…”

So we will first consider the distinction between that 
“camp” which is primarily focused on the technical side of 
collecting, storing, databasing, and delivering data versus 
(an admittedly soft “versus”) the side that looks to exploit 
the collection with pattern extraction and, ultimately, 
visualization. I shall focus on the latter, with an interest in 
the former, as it drives the logic of what kind of patterns 
result from big data collections which will most benefit 
the workflow. Before we move to workflow, however, it 
behooves us to consider, even at the “raw” level exactly 
what big data is. Before moving to the content level we are 
left to hover over a series of definitions of big data that all 
point in the right direction with no definitive opportunity 
to arrive at any collectively-agreed-upon location. This 
is irony of the nature of big data — once it can be clearly 
and universally defined it will not, per se, exist anymore 
— because everyone will know exactly how to exploit it. 
When it is somehow “complete” it no longer is big data as 
we should define it (Figure 08). For our purposes we’ll 
list some aspects of big data that help set a soft parameter 
around what big data is — this will suffice as a jumping-off 
point. With each definition I will say something about a 
kind of visualization that addresses that kind of big data 
parameter. In all cases, though, our paths to visualization 
and knowledge discovery will bias toward the modeling, 
not the collecting (and storing) of the data. Although a 
bias, it does not mean that we do not place less empha-
sis on the critical aspect of data collection, storage, and 
infrastructure; we want that aspect of our design process to 
be fully effective too, of course. We merely desire that the 
infrastructural practice follow the lead of front-end mod-

Figure 08: 
A challenge of rendering massive synthetic metapictorial  
imagery is one of not knowing “where” to search within 
the expanded amorphous field. The renderings by defini-
tion would be abstract, and essentially without defined 
boundary. Big data would seem to indicate, by definition, 
that there is always a “hard problem.” Two approaches to 
this challenge include the use of search avatars — code 
that provides for moving through the field of the imagery 
(not initially the data) to suggest areas of interest. Another 
method is simulated here through the use of applying a 
grid to the renderings and scoring discrete, yet similarly 
proportioned, areas within the entire matrix. In such a way 
a re-assemblage of the representation can be created that 
contains only those cells that possess anomalies above some 
threshold of interest or uniqueness.
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eling aspects. We do not desire that collections lead the 
engineering effort or we will not get the type of visualiza-
tion outcomes that best support knowledge discovery (this 
argument is too involved to justify here through example, 
suffice it to say that that which beforehand can be envi-
sioned in the mind, which is often the case with collection 
and library science, will not render the unexpected, and 
we want to render the unexpected). So our bias is to have 
the computational camp set the requirements and desire-
ments for data infrastructure side; though this, on the 
surface, may seem a bit counter-intuitive. Here is a brief 
list of some big data properties:

a) Usually large sets of data, in Terabytes, Petabytes, 
Exabytes and in future, beyond these — therefore, we 
are faced with the problem of modeling datasets that 
are too massive in visual scale — we are faced with de-
signing models that can be rapidly scaled and re-scaled 
(as is now possible in GIS type systems) where one can 
drill-down and blow-back to maintain context — we 
are challenged by the need to simultaneously arriving 
at small, discrete points within the entire picture and 
opening these “small points” when the data set may 
not be nimble enough to facilitate this.

b) “…data so large it does not fit main memory.” (Ra-
jaraman and Ultman) — Therefore, we have a de facto 
challenge to the visual modeling problem, namely, 
visual incompleteness. We are faced with the prospect 
that our rendering machines cannot process all the 
data into any one model at any given time; at the most 
challenging level the models are, therefore, always 
in a state of being constructed, and our contextual 
surround is increasingly less defined (or resolved). 
If we move too quickly, or with too much resolution 
through the data, we automatically have less data.

c) “Here’s the big truth about big data in traditional 
databases: It’s easier to get the data in than out” (The 
Pathologies of Big Data By Adam Jacobs Communica-
tions of the ACM, Vol. 52 No. 8, Pages 36-44). Although 
this is very much an infrastructure problem, it is also 
a fundamental design modeling challenge — visual 
lag-time. Even if we are successful at building very 
comprehensive models of the data we are pursuing 
within the greater dataset, what we need to know 
might still be in a pipeline toward our already built 
model, or awaiting processing due to an inadequate 

rendering (not collecting) model (This is probably the 
case with most visual rendering modes that are being 
used to render big data today).

d) Big data can be replete with “touchpoint” problems, 
that is, there may be categories that have no coherent 
way to discretely render — visual non-compatibility. 
Here we would be concerned with taxonomy problems 
as well as inconsistent rendering “maximals,” so that, 
say twenty points of coherent meaning on the front 
end are attempting to convey an incompatible number 
of “meanings” from the dataset. This would be akin 
to an outlet in an electrical box that had no incoming 
power source, or an electrical box for intended power 
output but which possessed no outlet in which to plug 
into.

e) Purge difficulty — Another challenge of big data 
is the ability to effectively delete information that is 
intrinsically redundant, obsolete, or legally non-col-
lectable (these are mostly time-based or policy issues); 
this can result in —visual redundancy —  the default 
position of visual design and visual communication 
has always been one of real estate. Gutenberg based his 
epochal work on the blackletter hands of the exempla-
ry scribes of the day — blackletter being a highly com-
pressed script that saved valuable parchment; classified 
ad space was sold by agate lines (small depth-measures 
of less than 2mm width) in Newspapers; and telegrams 
created a language of “short-speak” nearly two centu-
ries before SMS, or “text-speak.” Concision, through 
analytical logic, or simply via scale (e.g., microprint-
ing and microfiche generated through photographic 
reduction) has been a handmaiden to communications 
efforts from the outset. Visual redundancy can be said 
to exist through both unnecessary duplication of ren-
dered data; non-required rendering of data; and un-
necessary scale — all factors of real estate inefficiency.

f)  “What we are seeing is the ability to have econo-
mies form around data — and that to me is the big 
change at a societal and even macroeconomic level.” 
(Craig Mundle) Mundle places data on the level with 
labor and capital itself; bitcoin (a self described crypto-
currency) is an example of inherent, distributed (in 
theory) data value, less stable than capital, and far less 
stable than labor, there is an inherent idea that data 
may be more inherently stable and quasi-natural, more 
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Figure 9a:
A simulated metapictorial rendering shown at 
the highest level of magnitude.  This is a detail 

of Figure 06. Recapping: the blue “ground” is 
a massive amount of temporarily consistently 
rendered data at for this moment of viewing. 

Conceptually, this consistency allows the repre-
sentation to  unveil complex relationships that 
are emerging from the full collective of data — 
each pattern is overlapped with other patterns 

which will reveal complex interdependencies.  
Moving through this immersive environment 

will immediately yield similar differences of re-
vealed interconnectedness (layer-by-layer). The 
small triangular devices are search avatars that 

bring viewers to potential displays of interest.

Figure 9B:
The model has been stepped-down from the 
higher level of magnitude to a less granular 

and less diffused rendering. (This type of 
rendering might also be displayed if users are 
moving more rapidly through the model.) As 

the metapictorial renderings become more 
formalized the taxonomic aspects become 

simultaneously more easily recognized — so 
certain  shapes or line or dot elements are con-

sistent and indicate similar aspects or collec-
tions of data.  The background field also begins 

to  reform and “coagulate” into representative 
kinds of amalgamated data — in this manner  

subtleties of visual distinction are sacrificed for 
more rapidly coherent contextual renderings.     

Figure 9c:
This is the lowest order of metapictorial 

magnitude illustrated in this sequence: the 
model is on the verge of moving from a picto-
rial rendering into a diagrammatic one. As a 
hybrid of pictorial and relational imagery the 

diagrammatic sections function as kinds of 
“fingerprints” of data that, though generalist in 

type, might possess higher level characteristics 
(due to curvature, line density, and consistency, 

etc.) than might be realized in typical, albeit 
highly complex, node-and-link diagrams. In 

such modeling, background context also plays a 
more taxonomically subtle role. 
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Figure 9d:
Here, the metapictorial rendering has been 

stepped down to a diagrammatic level. There 
are still rich subtleties within these node-and-

link models as a result of the compression of the 
higher levels of rendering — the node-and-link 

elements possess aspects of “continuous tone” as 
opposed to purely digital, discrete models. The 

ability to withhold aspects of the analog model-
ing helps to define bridges across more discrete 
taxonomic divisions and reveal potential areas 
of unexpected overlap. This example  is begin-
ning to formulate into multi-tiered relational 

network  divisions. 

Figure 9e:
More highly diagrammatic with great clarity of 
distinction between link-and-nodes, hierarchy, 

and interconnectivity. As the level of magnitude 
is reduced absolute clarity between taxonomic 
characteristics are readily apparent. Logically, 

the potentially expanded network of node-and-
links are captured within tiers that allow for a 

rapid cross-comparison of types — each cluster 
is composed of four levels and each cluster is 

further modified by size. The background begins 
to be shed of data reference, per se, it is now 
establishing reference values  to the elements 

placed upon it — the total “size” of this render-
ing would be  hundreds (or more) times larger 

in area than the metapictorial renderings.     

Figure 9F:
Although there remains a hierarchy of types, 

the diagram has been opened into an “uncon-
strained” relational network. The  diagram still 

maintains qualities of  an z-axis. This level of 
dimensionality is indicated by the use of black 
in foreground and greys in background. There 
is no longer any contextual referencing and no 
basemap to support extra-notation regarding 

the value of the nodes. Although still touch-
screen based and immersive, the user would 

need to be selecting aspects of connectivity,  the 
diagram would become extremely complex and 
very large without such filters and limitations.  
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Figure 9g:
Stepping the diagram down another step the 

image is truly 2d, the node-and-link elements 
are on a single plane. There remains a slight 

hierarchy in nodal size; links would  be selected 
from a large menu of interconnectedness op-

tions. This model, if spread out and compared 
to the highest order of magnitude, would be 

thousands of times large on a 2d basis — this 
would, however, be the desirable view if the 

users are down to the near-last-mile of their 
search.  The orientation of the node angles 

provide context, otherwise there is minimal 
contextual intelligence.   

Figure 10:
This last example in the sequence illustrates 
the lowest level of magnitude: a relationally 

constrained spreadsheet. Millions of pages of 
such spreadsheets (here depicting USA automo-

tive license plates as an example) would be 
continuously updated; and each of the spread-

sheets can only depict certain levels of reference 
and interconnectedness. Therefore, many plate 
numbers would need to appear in a multitude 
of positions in order to express such intercon-
nectedness. This rendering would most likely 
be navigated by more traditional control sets 

as well.  
 

Figure 10 has served as a brief tour of informa-
tive visual representation from the metapictorial 

to the diagrammatic; within the diagrammatic 
it has moved from clustered to de-clustered 

unconstrained relational imagery to constrained 
relational imagery — the spreadsheet.
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structure, than superfice. (But this awaits real world fi-
nance and government weariness of non-fiat currency 
to bear out.) This would lead to an idea in visualization 
of “status ordinarius” — in such interfaces there would 
only be excruciatingly slow, minimal change, a kind of 
reverse of time-lapse photography. Change detection is 
an example in image analysis that conveys this idea — 
if you have all the data over time it actually said to be 
moving “slowly.”

g) Overlapping dimensions of big data, an example as 
defined by IBM: Volume, Velocity, Variety, Veracity — 
this useful 4V mnemonic speaks to the fact that there 
are vectors of overlapping qualities, or logical dimen-
sions in bag data that provide a challenge to — consis-
tent visual logic — in most cases this would be a fairly 
insignificant problem. One could use a consistent logic 

within one kind of view, a map for example, and then 
select another view, a photograph or diagram, toward 
elucidation of a point on a map. Therefore, the user 
simply disengages from one form of visual logic and 
calls up another. However, the potential richness of big 
data might mean that the scale of the data, the speed 
of its availability and change, the sheer kinds within 
the whole system, and the unknown factors of its reli-
ability are not discrete, but merged. In such a case one 
would not move through types effectively, or if one 
moved through types the extractable knowledge might 
be ineffective. Consistent visual logic is a significant 
challenge when categories are effectively merging; 
graphical approaches such as rubber-sheet graphs have 
been used to address a kind of flow-through across 
typically discrete logics — big data permits logical 
flow-throughs which might be a challenge to model-
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THE 50 LONELIEST
ISLANDS IN THE WORLD

Inspired by Judith Schalansky’s 
Atlas of Remote Islands, 
this map features the fifty 
loneliest islands on Earth.
This infograph ranks the 
loneliness of each island by 
scoring the number of 
inhabitants, the overall land area 
of the island, and its proximaty to 
other land (and the population of 
this closest land). Each factor 
ranks from one to fifty, where the 
scores of these three aspects 
are cumulated to calculate 
the final score.

Starting from the center smallest 
circle, is the least lonely island. 
There are fifty circles each 
encompassing one island. 
As the circles grow in diameter, 
the islands are increasingly lonely.

The chart is divided into five 
sections — one of each ocean — 

the islands are mapped according 
to their location in relation to 
either the Equator (North to 
South) or the Prime Meridien 
(East to West).

The loneliest of all is the 
currently uninhabited Taongi Atoll, 
in the middle of the Pacific Ocean, 
a mere 3.2km² of land area.

The least lonely island is 
Christmas Island in the 
Indian ocean.  
With 1,402 inhabitants, 
it is certainly not the highest of 
the fifty in this aspect. 
Christmas Island scored highly 
because it is only 350km away 
from Java, an island holding 60% of 
the Indonesian population.

The purpose of this map is 
not to show the accurate 
geographical positions of these
islands. It does not show the 
islands remoteness in the 
geographical aspect, 
rather the remoteness in other 
aspects that render a place lonely.
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HOWLAND ISLAND
UNITED STATES
Currently Uninhabited

SO U T H KEELI NG ISLANDS
AUSTRALIA
596 Inhabitants

ST H ELENA
UNITED KINGDOM

4,255 Inhabitants

T RISTAN DA CUNHA
UNITED KINGDOM
264 Inhabitants

IWO JIMA
JAPAN

370 Inhabitants

CO COS ISLAND
COSTA RICA

Currently Uninhabited

CLI P P ERTON ATOLL
FRANCE
Currently Uninhabited

RAPA I T I
FRENCH POLYNESIA
420 Inhabitants

EAST ER ISLAND
CHILE
3,791 Inhabitants

NORFOLK ISLAND
AUSTRALIA
2,128 Inhabitants

ASCENSION ISLAND
UNITED KINGDOM

1,100 Inhabitants

RAO UL ISLAND
NEW ZEALAND
10 Inhabitants

ST GEORGE ISLAND
UNITED STATES

128 Inhabitants

SEMISOPCH NOI
RAT ISLANDS, UNITED STATES
Currently Uninhabited

PUKAPUKA
COOK ISLANDS
600 Inhabitants

BO UVE T ISLAND
NORWAY
Currently Uninhabited

T RI NDADE
BRAZIL
32 Inhabitants

P I NGELAP
MICRONESIA
250 Inhabitants

POSSESSION ISLAND
CROZET ISLANDS, FRANCE

26-45 Inhabitants

TAONGI ATOLL
MARSHALL ISLANDS
Currently Uninhabited

ST PAUL ISLAND
FRANCE
Currently Uninhabited

AMST ERDAM ISLAND
FRANCE
25 InhabitantsT ROM ELI N

SCATTERED ISLANDS, FRANCE
4 Inhabitants

DI EGO GARCIA
UNITED KINGDOM
2,700 Inhabitants

ANNOBÓN
EQUATORIAL GUINEA
5,008 Inhabitants

FLOREANA
ECUADOR

100 Inhabitants

CH RIST MAS ISLAND
AUSTRALIA
1,402 Inhabitants

AN T I PODES ISLAND
NEW ZEALAND
Currently Uninhabited

RUD OLF ISLAND
RUSSIA

Currently Uninhabited

MACQ UARI E ISLAND
AUSTRAILIA
20-40 Inhabitants

CAMP BELL ISLAND
NEW ZEALAND
Currently Uninhabited

T I KOP IA
SOLOMON ISLANDS
1,200 Inhabitants

BANABA
KIRIBATI

301 Inhabitants

BRAVA
CAPE VERDE ISLANDS
6,804 Inhabitants

BEAR ISLAND
NORWAY
9 Inhabitants

NAPUKA
FRENCH POLYNESIA

277 Inhabitants

ATLASOV ISLAND
RUSSIA

Currently Uninhabited

ROBI NSON CRUSOE
CHILE
633 Inhabitants

SO CORRO ISLAND
MEXICO

250 Inhabitants TAKUU
PAPUA NEW GUINEA
560 Inhabitants

LAURI E ISLAND
SOUTH ORKNEY ISLANDS, ANTARCTICA
14-45 Inhabitants

P I TCAI RN ISLAND
UNITED KINGDOM
48 Inhabitants

ST KI LDA
UNITED KINGDOM
Currently Uninhabited

PAGAN
MARIANA ISLANDS, US

UNINHABITED

LONELY ISLAND
RUSSIA
Currently Uninhabited

P E T ER I  ISLAND
ANTARCTICA
Currently Uninhabited

SO U T H ERN T H ULE
SOUTH SANDWICH ISLANDS, UK

Currently Uninhabited

DECEP T ION ISLAND
ANTARCTICA

Currently Uninhabited

FRANKLI N ISLAND
ANTARCTICA
Currently Uninhabited

FANGATAUFA
TUAMOTO ARCHIPELAGO
Currently Uninhabited

Figure 11: 
Lonely Islands (48 x 48 

inch), information design 
problems involve careful 

considerations of non-data 
space. Although this is not 
always a major consider-

ation, and is often addressed 
through the intangible 

“talent” of the designer, it 
plays a major role in the ef-

fectiveness of a presentation, 
particularly in larger dis-

plays. This example included 
a fair degree of classification 

and “scoring logic” as well  
— these kind of design art 

metapictorial models would 
need to be coded to the  spe-
cific content of that which is 

to be communicated. Only 
one kind of visualization — 

real imagery — generates 
its own naturally rendered 

model with requisite  
interstitial space.  Synthetic 
metapictorial imagery can 

emulate these kinds of logic. 
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Remington & Sons 
mass produce the 
Sholes & Glidden 
typewriter.

Thomas Edison builds 
and patents first electric 
typewriter (workable 
model was introduced 
in 1920).

IBM introduces the 
more refined version of 
the “Electromatic” 
typewriter.

1872

1873

Kodak spent $5 billion 
on digital imaging 
research, only to 
delegate it to 23 
separate scanner 
projects.

1930’s

1940’s

1950’s

IBM develops the 
floppy disk, which 
marked a new stage 
in evolution of 
storage media.

Vydec is the first 
manufacturer to 
produce a word 
processing system 
using floppy disks 
for storage.

Lexitron and Linolex 
developed word 
processing system that 
included video display 
screens and tape 
cassettes for storage. 
With screen, text could 
be edited without 
having to produce a 
hard copy.

Toshiba JW-10 is the 
first word 
processor for the 
Japanese language.

“Expensive Typewriter” 
was a text-editing 
program ran on the big 
computers (DEC PDP-1), 
it could drive an IBM 
Selectric, and it is the 
first word processing 
program.

The first digital 
camera, developed by 
Steven Sasson, an 
electrical engineer at 
Kodak; however, was 
not public.

Kodak commanded 
90% of film sales and 
85% of camera sales in 
the U.S.

Kodak employed over 
145,000 workers 
worldwide.

1975

1988

1976

1991

Vinyl becomes medium 
of choice.

1
1

1

2

ATT is formed and is 
the first national 
telephone network.

ATT installs first 
coin-paying public 
phone.

1

2

3

4

New microwave radio 
technology basis for 
long-distance 
telephone calls.

ATT acquires NCR 
Corp., a computer 
maker in a $7.4 billion 
transaction.

5
ATT acquires cable 
television giant, 
Tele-Communication 
Inc., in a $53.5 billion 
deal.

The Kodak camera, the 
first camera for 
consumers, starting 
amateur photography.

1

The Brownie camera, 
a simple camera that 
initially cost only $1 
and created a new 
mass market for 
photography.

2

3
Kodachrome, the first 
more portable 35mm 
color film.

1935

1900

1889

4

5

6

7

Peak year for Kodak. 
Kodak had over 
2/3rds of global 
market share. 
Revenues reached 
nearly $16 billion, 
stocks exceeded $90, 
and the company 
was worth over $31 
billion. 

19968

1

2

3

During this time period, 
the look of the 
typewriter changed 
completely. More were 
used in offices and 
have transformed how 
they did their jobs. It 
had a new version of 
keypad that let to the 
changes into the start 
of computers.

1959

1960

1961

6

8

10

1885

1889

1947

1991

1999

M. Shultz Company 
introduces the more 
refined version of the 
“automatic or repetitive” 
typewriter.

4

The “automatic” was 
succeeded by the 
“Flexowriter”.

5

IBM introduces the 
“Selectric” typewriter.

7

IBM brought the 
Magnetic Tape 
typewriter, which was 
the first reusable 
storage medium for 
typed info. This marked 
the beginning for word 
processing.

1964

1971-1978

1970’s

1972

1973

9

This is when computers 
were a big thing, the 
first PC was introduced. 
Microsoft introduced 
Word word-processing, 
and planned to create 
Windows. The PC has a 
keyboard, monitor, and 
the actual computer 
screen. From here on, 
computers only got 
more advanced with 
speed and accuracy.

11 1981

Thomas Edison records 
"Mary Had A Little 
Lamb" on the first 
working phonograph, 
becoming the first 
inventor to successfully 
record the human 
voice.

1877

The cylinder, hindered 
by the lack of industry 
standardization, lack of 
recording space, and its 
cumbersome size, is 
finally retired with the 
Victor Talking Machine 
Company's 1906 
introduction of the 
"Victrola," an adaptation 
of a phonograph 
designed to fit within 
the home. 

5 1906

1943

1888

1

Emile Berliner invents 
the gramophone, which 
uses a disc rather than 
a cylinder as the 
recording medium.

2

Music publishers 
appeal to the courts 
when the piano roll 
companies refuse to 
pay publishers for the 
rights to reproduce 
recordings on the 
player piano scrolls. 
The U.S. Supreme 
Court delivers a blow to 
the music publishers by 
declaring that 
copyrights will only 
protect those 
songs that 
can be read 
by the human 
eye.

4

1890’s

1900

The Columbia 
Phonograph Company 
achieves little success 
until it begins to record 
music to send to 
fairgrounds to 
accompany its leased 
graphophones; thus 
resulting in the birth of 
nickel jukeboxes. 

3 6 1930’s

1933

Tape recording 
cartridges are 
developed in 1930, but 
tapes remain largely 
behind the scenes 
during the Depression 
and into the 1950s. The 
presence of free radio 
broadcast during the 
Depression leads to a 
decline in record sales.

FM Radio introduced.

The birth of the MP3.

7

The cassette tape 
becomes mainstream.

Shawn Fanning and 
Sean Parker debut the 
peer-to-peer file-sharing 
network Napster. The 
RIAA sues Napster for 
alleged copyright 
infringement.

19648

1999

The telephone 
developed in the 
mid-1870s by 
Alexander Graham 
Bell and others.

1870’s

Death to vinyl: Record 
companies announce a 
worldwide standard 
that ensures that all 
CDs will play on all CD 
players. Billy Joel's 
“52nd St”, released in 
Japan, becomes the 
first CD released.

1980’s10

1970’s9 199011

Streaming Internet 
audio introduced.

199512

13

US Congress declares 
sound recordings worthy 
of copyright protection 
in passing the 1971 
Sound Recording 
Amendment to the 1909 
Copyright Statute. Music 
sales slide, but cassettes 
live well with the decline 
of 8-track players and the 
introduction of the Sony 
Walkman in 1979.

3

54

1

2

1

2

1

Ray Tomlinson sent 
the first email.

1971

AOL instant 
messenger launches.

1997

1
Macintosh and PC 
computers advance 
and become more 
available to the 
public, making email 
traffic boom in the 
millions - trillions.

1990’s2

1

2

The first pager. Jennifer Shim
2012-2013

19581

One-way pagers stop 
production, mobile 
phone sales increase.

20012

iTunes launches and 
over 1 million songs 
were sold within the 
first week.

20031

Youtube launches 
while their first video 
reaches over 8 
million views.

2005

Black and white 
along with color 
televisions sold 
before high definition 
televisions.

1950-80’s

1

1

12

1

1

1

LCD televisions 
surpassed sales of 
CRT-based televisions 
worldwide for the 
first time.

20072

A smartphone is a 
mobile phone built 
on a mobile 
computing platform, 
with more advanced 
computing ability 
and connectivity than 
a feature phone.

2006-2012

Besides being a 
mobile phone, it also 
contained a calendar, 
address book, world 
clock, calculator, note 
pad, e-mail client, the 
ability to send and 
receive faxes, and 
games. 

2006-2012

By 2012, there were 
over 3 billion 
smartphone 
subscribers.

2012

Over 5 million mobile 
phone subscribers 
while the world 
populations stays at 
a steady 7 billion 
people.

2012

1885 2012

1890

1896

1901

1907

1912

1918

1923

1929

2000

2001

2002

2003

2004

2005

2006

1989

1984

1978

1973

19
67

19
62

19
56

19
51

19
40

The first mobile 
phone.

19461
Mobile phones 
become more portable 
and hit over 100 
million users during 
the millenium.

20002

PDA UNITS

# OF ITUNES 
SONGS SOLD

YOUTUBE 
SUBSCRIBERS

YELLOW PAGES 
PRINTED

SMARTPHONE 
SUBSCRIPTIONS

MOBILE
SUBSCRIPTIONS

NEWSPAPER 
SUBSCRIPTIONS

KODAK SALES

1 inch = 72 points

1 point curve is equivelent to one million users/units sold. Anything less than than the 1 point 
line thickness on the polar graph ranges from 0 to 0.9 milion users/units sold.
Ex. Landline Subscriptions from 1885-1907 has a line thickness of 1 point.

Telecommunication Tasking Entertainment

# OF TELEVISION 
UNITS SOLD

MOBILE 
SUBSCRIPTIONS

PAGER & BEEPER 
USERS

EMAILS SENT

LANDLINE 
SUBSCRIPTIONS

AT&T HISTORY 
AND REVENUE

The Spark Of 
Digitization

Integration Through the 
Smartphone

Electrification of 
Media

This polar grid timeline showcases the years 
1885-2012 and several industries affected 
through out time with different eras of 
evolutionary upgrades in technology. Above are 
three time-frame divisions displaying older era 
items to the modified era items:  The 
Electrification of Media,  The Spark of 
Digitization, and The Integration through the 
Smartphone. Within this whole time-frame also 
displays three categories of communication and 
digitization: Telecommunication, Tasking, and 
Entertainment. 

As time advances there are a number of 
industries disappearing while inching towards 
the Spark of Digitization while new social 
communication industries are rapidly escalating 
and some even completely dissappearing when 
time nears the Integration through the 
Smartphone. Many of these industries go 
through phases and are completely 
evolutionized because of the capabilities that 
the smartphone beholds. Some companies that 
did not begin producing communication 
products somehow wound up in this one 
amazing smartphone evolution. Despite there 
being an elimination process throughout 
digitization there came a creative process to 
new innovations.

A Timeline of a Destructive & Creative Process: 
Electrification of Media, The Spark of Digitization, and 
Integration through the Smartphone

Figure 12:
The former example was a 
abstracted map positioned 

over an actual, albeit highly 
distorted, geospatial surface. 

This example is a simple 
quantitative and relational 

diagram rather than a 
design arts metapicto-

rial image, although it does 
possess many aspects of the 

metapictorial from the point 
of view of its whole composi-
tion. The diagram illustrates 

the rise of multiple kinds 
of media and their subse-
quent number of users. It 

illustrates how digitiza-
tion collapsed the distinc-
tion between media, and 
finally, how smartphones 

full immersed there into a 
collective (white area). One 
can see the unique develop-

ments; but the composite 
pattern renders a “gestalt” 

like insight — a picture 
of the entirety. (Therefore 
somewhat metapictorial.) 

ing data in a cognitively ascertainable way. From these 
definitional approaches to big data it can be seen 
that, as we are constantly looking to what the source 
material may be rendered, we are leaning toward the 
computational versus the infrastructural as the driver 
of some potential toolset. Having gone through these 
descriptions of the nature of big data I would ask that 
they be considered in the notion of the metapictorial 
that is being constructed here, so this is a good point 
in the document to look at how visualizations for data 
through to big data may have commensurate logic for 
visual representation — this is shown from the highest 
to (nearly) lowest levels of magnitude in Figures 9A 
through 9G and Figure 10. Having done this con-
sider the second area in our list of significant condi-
tional splits respecting: 

KNOWLEDGE DISCOVERY VS. DECISION MAKING 

AND DECISION SUPPORT: how legacies of visual model 
building impact subsequent visualizations and why innova-
tion is stymied.

The former CEO of In-Q-Tel, Gilman Louie, made this 
statement, “A tool that presents me with new ways of 
looking at new data is not nearly as useful as a tool that 
presents me with new ways of looking at the data I have to 
deal with every day.” Figure 11 and Figure 12 address 
this kind of concern from a decision-maker’s perspective. 
Though they are static images they are comprehensive and 
integrated (what we might term “info-engines” as they 
produce an energy of knowledge from a closed system). 
Louie was in position as a decision-maker and such inte-
grated findings from knowledge one uses everyday would 
be beneficial.  His directive reveals an underlying concern 
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regarding data analysis in the general sense; that there 
is something lacking in our understanding of what we 
collect, we are simply not getting out of what “we put in”. 
The very notion of big data magnifies this rift to a level of 
near absurdity. If we are getting ever more data are we at 
the same time falling more behind on the ability to parse 
this content? If we break the argument down we might 
consider a number of scenarios: 

1) the standard sets of data viewed through 
the standard tools;  
2) new sets of data viewed through the standard tools;  
3) the standard sets of data viewed through new tools; or 
4) new sets of data viewed through new tools. 

In the first instance (the standard sets of data viewed 
through the standard tools) there would be no knowledge 
discovery, per se, although there would be an every grow-
ing collection of new knowledge along the same kinds 
of taxonomies and collections of the past. The second 
example (new sets of data viewed through the standard 
tools) will either be a kind of compromise of analysis, or 
more desirably, enrich the context of the existing collec-
tions. Both of these scenarios probably follow protocols 
of decision support. Users are familiar with the toolsets, 
and the toolsets have been designed with these users in 
mind. The process is very much putting square pegs into 
square holes; nothing much risked and nothing much 
gained. (But lots of billable hours[+], or conversely, hours 
billed[-].) These processes, admittedly, are critical in their 
own right for communicating to decision-makers (an ever 
increasing number who are not subject experts having 
arrived at positions of authority more from lateral, than 
through hierarchical means). The decision-maker relies 
on findings from standardized tools for the majority of 
actions taken; and these reports are derived from famil-
iarized users of the data sets in question. Alternatively 
the decision-maker intends that directives, derived from 
supplied intelligence, are carried out — this is done by 
a system outside the loop in some cases; or through the 
same tools that generated the reviewed intelligence in 
all the others. Either way, the decision-maker is a kind 
of Janus: looking in one direction for actionable input 
and looking the other direction to see that desired ac-
tions. Then, resulting from all those sources of input, 
are expected actions generated  from tools that fulfill the 
decision-maker’s directives. If the decision-maker wanted 
to receive intelligence with ever higher levels of insight 

this might mean that the tools for decision support would 
be incommensurate to that objective. Again, as most 
toolsets are (understandably) built to specifications that 
allow the carrying out of the decision making processing it 
would follow that these would be somewhat antithetical to 
knowledge discovery.

To go further, let us consider the scenario where our 
opening quote — “…a tool that presents me with new 
ways of looking at the data I have to deal with every day” 
comes into play. This would be our third tier; the standard 
sets of data viewed through new tools. Here we see Mr. 
Louie’s focus: the desire to discover the new or essential 
from the data collection as it stands and as it grows from 
the current method of collecting. Such next-generation 
toolsets were, of course, one of the whole points of In-
Q-Tel. Big data unapologetically pushes us to the fourth 
tier; new sets of data viewed through new tools, truly a 
potentially chaotic point, and the very concern that the 
statement elicits. This though, is the exact chaos that we 
need to tame, and the very reason why knowledge discov-
ery must be the “design-lead” in the effort. With big data 
coming at us (even though it is doing so through our own 
invitation and technical prowess) we cannot use standard 
methods of either computation nor visualization or we 
enter the fray already “behind the curve.” Building tools 
for knowledge discovery requires a dedication to some 
creative methodology. (I prefer to just say creative method, 
but methodology seems to be the default term.) 
    This is a challenge because, with the exception of 
the most rarefied R&D, contracting is modeled around 
outcomes (read: requirements) that flowed from decision-
maker’s directives and program execution. Contacts rarely 
require, “do something novel” without then expressing 
exactly what novel is. Subordinates arc toward compli-
ance; contractors fear losing current or future task orders. 
Workflows around data are generally biased toward deci-
sion support and program execution (discovering more of 
the known) than they are aimed at  knowledge discovery 
(discovering more of the unknown). Very different kinds 
of visualizations and visual control methods are actually 
necessary for these two tasks. In the broadest sense, infor-
mative visualization supports areas for: Decision Making, 
Decision Support, or all the areas of “New Discovery.” 
Of course, this kind of discovery/’uncovery’ is often a 
major challenge that is undertaken as part of an objective 
expressed under decision making; yet the visualization 
for the former (discovery) are often significantly different 
than those directed toward decision-makers (read: “make 
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A book that I have recommended for over fifteen years 
to all students in classes of Information Design is David 
Bohm’s On Creativity (Rutledge). Bohm, a scientist, has 
a lengthy philosophical investment in thinking about the 
creative as it applies to the scientific.  In the opening chap-
ter he discusses the state of mind and the singular drive 
of the creative endeavor. After discussing the fact that 
most go along with the system, or react against the system 
in an uncreative way, he continues (paragraphs 53 and 
54) “What, then, is the creative state of mind, which so 
few have been able to be in? …it is, first of all, one whose 
interest is what is being done is wholehearted and total, 
like that of a young child. With this spirit, it is always open 
to learning what is new, to perceiving new differences and 
new similarities, leading to new orders and structures, 
rather than always tending to impose familiar orders and 
structures in the field of what is seen.

“This kind of action of state of mind is impossible if 
one is limited by narrow and petty aims, such as secu-
rity, furthering of personal ambition, glorification of the 
individual or the state, getting ‘kicks’ and other satisfying 
experiences out of one’s work, and so forth. Although 
such motives may permit occasional flashes of pen-
etrating insight, they evidently tend to hold the mind a 
prisoner of its old and familiar structure of thought and 
perception. Indeed, merely to inquire into what is un-
known must invariably lead one into a situation in which 
all that is done may well constitute a threat to the suc-
cessful achievement of those narrow and limited goals. A 
genuinely new and untried step may either fail altogether 
or else, even if it succeeds, lead to ideas not recognized 
until after one is dead.”

This is an obvious inversion to the kind of logic found 
in the “Design for Dummies” books near the check-out 
counters of Barnes & Noble and more akin to the type of 
book written by Bob Gill, Graphic design made difficult. 
[sic] Design-centric logic is a type of extraction while user-
centric logic is a type of provision. Consider, for example, 
the progress of science and the pains taken to find forms 
and patterns — applicable reliability — from nature. The 
search was essentially that of design from nature that is 
design in nature. Once knowledge is derived through 
considerable effort (and the kind of thinking extolled 
by Bohm above) human societies could choose one of 
two major paths: adapt (through a kind of provision) or 
modify through a new kind of design, post-natural design. 
This is what Western culture did. It will be seen that big 
data is forming a new nature (and a fast revising culture). 

it simple”). Once a decision is made the visualizations for 
supporting such decisions usually require quite different 
visualization and interface toolsets than one would require 
at the “start” of the process.

Allow me to express the challenge through the busi-
ness model of a (typically) bureaucratic pyramid structure. 
Many workers at the broad base of the knowledge tools 
pyramid might serve only as data entry specialists; moving 
up from here are the analysts looking at such data in com-
posite or “50,000 foot” views using visualization toolsets 
that support a fairly well stated objectives. Toolsets (and 
their visualizations) would be expected to be user-centric; 
well-considered in terms of clarity, minimalism, match, 
jargon-reduction, etc. In short, toolsets that were built 
very much with heuristic considerations. Here the users, 
though tasked with a purpose not of their invention, are 
carefully considered and accommodated for.

As we move up to the top of the pyramid there is a 
much smaller workforce, perhaps these are those tasked 
with knowledge discovery. Regardless they will be ex-
pected to contribute innovatively. Here I would argue, an 
overtly dedicated concern of heuristics and user-consider-
ation will necessarily diminish the potential of true knowl-
edge discovery. Knowledge discovery involves a kind of 
pain that comes form not being comfortable with what is 
before one, but greatly desirable to derive value at whatev-
er cost is necessary to extract, or pay. How could these two 
visualization approaches be the same? It is highly unlikely 
that they should be.

SPECIFICITY IN DESIGN-CENTRICITY VS. USER-CENTRIC 

UNIVERSALITY: the rise in Emphasis upon user-experience 
issues and heuristics — how this approach creates an info-
visualization bias of compromise and “chasing the users.”

Our bias of knowledge discovery modeling  (over decision 
making modeling and decision support modeling) rightly 
elicits a parallel interest in innovation and creativity. Any 
design trajectory toward a elevated, yet ill-defined, target 
should rightly do so. This means we need to look very 
carefully at our next general decision cluster: heuristic 
considerations. Here we see an area where the consensus 
of the professional is toward increasingly advanced means 
to deploy user testing, understand the psychology of users, 
and creating for users some kind of highly intuitive work-
flow for those who will be looking at, and working with, 
whatever is generated from our big data system. 
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than infinity a, we can understand that the interstitial 
spaces are of varying size, as an ever decreasing fraction 
would have similarly ever decreasing “realms” of intersti-
tial “quantities”.

Importantly, this may provide us with another defining 
nature for big data, namely that the added dimensions in 
big data would arguably create a larger infinity of inter-
stitial space. For, if all those data sets that are “not big 
data” have structures that provide any number of linear 
possibilities, even if those possibilities provided ostensible 
multi-dimensionality, there would still be mostly non-pos-
sible areas within the mass of intersecting infinity a-like 
datasets. Conversely, big data would be more like infinity 
b, permitting all those areas between the lines to possess 
more data. Therefore the interstitial space in an infinity b 
paradigm would be a higher infinity. And, this cannot be 
captured by graphs, diagrams, charts, or any 2D diagram-
ming. It would be more likely captured by 3D imagery 
such as foldable rubber-sheet graphs, or distorted maps; 
but it would be most likely expressible through a new kind 
of thing (to purloin a bit from Wolfram) — parallel natural 
imagery. As real imagery is seen in our normal psycho-
physical context so could big data be seen through such 
new-natural imagery. However, it would not be natural but 
synthetic — it would capture the interstitial space. In the 
same manner by which a figurative artist, filling the canvas 
with a portrait, may choose to not include some detail. 
Yet, in the finished work something must be there. In a 
diagram we can leave things out, in real imagery we can 
falsify but there is no “blank” space. 

Of course our whole objective is to model the data, 
(Figures 11 and 12 again) but we also need to model 
the non-data — we need to model the interstitial space — 
and this can only be done  automatically with contiguous 
imagery; otherwise it involves extremely careful design 
investigation and spatial resolution. We need to consider 
non-data space from a computational level and aesthetic 
level with additional care for every rendering that is not in 
the higher state of pictorial imagery — for pictorial imag-
ery the issue is merely determining boundaries — this can 
be a real advantage in working with big data.

TAXONOMIC VS. ONTOLOGICAL: how the notion of nam-
ing and categorization supports, or fails to corroborate with, 
the nature of the data being processes.

One of the intellectually rewarding challenges in the pro-
cess of designing is establishing taxonomies and ontolo-

This is a nature on the other side of post-natural design.  
The data sets are becoming large enough to form natural 
systems of their own, and the same types of investigations 
that extracted patterns form nature will need to be applied 
to these conglomerates to access their values and in turn, 
act upon them.

In our search for next-generation tools for the dis-
play and analysis of big data visual renderings we should 
look toward the golden ages of our investigations into 
nature; what kind of mind took the challenges, risks, and 
dedication upon themselves to pursue such endeavors? 
And, who were those who then dedicated themselves to 
understand their findings? The students were not coddled, 
they too had to invest in the difficulty of the thing. Our 
bias then, is to look to multiple kinds of sacrifice on the 
part of engineering/design in development, and a similar 
(but different because its increasingly non-tangible) kind 
of sacrifice on the part of intended users whence deriving 
useful knowledge discovery from the toolsets.

TANGIBLE VS. INTERSTITIAL: as big data “fills” interstitial 
space why the need for “non-data modeling” is worthy of 
consideration.

One paradoxically-laden question we may ask of the big 
data milieu is this, “As data grows is it expanding outward 
or filling inward?” Logically the answer would seem to 
be both — in some cases we are building out the system 
with volumes of new data that is additive, in others we 
are collecting ever-refined data which can be said to exist 
between two points.

In mathematics this idea is captured in the notion of 
“infinity a” and “infinity b”. In one case we have whole 
numbers in an ever expanding continuance of integers. 
We can assume that the interstitial space between these 
integers is the same; most diagrams equally space such 
points (provided the integers are uniform and sequential). 
Diagrams are conceptual. When one looks about in a 
natural world all that is seen is real imagery. Only fore-
knowledge allows one to look at a number of lakes and 
recall a map of the area, or hold up a chunk of quartz and 
see a periodic table of elements and the values for electron 
arrangements and atomic numbers for silicon and oxygen. 
The interstitial spaces in these diagrams are nominally 
equidistant. With the common exception of long period 
timelines (where the past is often compressed) most 
conceptual diagrams are fairly true to uniform interstitial 
space. Turning to infinity b, which is theorized to be larger 
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gies which lead to the logical structuring and hierarchies 
of types within the “allness” of the content being consid-
ered. In this paper I use the word “taxonomy” to describe 
a logical division of kind within the full set; added to this 
is usually the conditional (but not intrinsic) requirement 
that a name or label is attached to this inclusive grouping.
    Such naming of patterns provides essential reference. 
By ontology I (here) refer to the nature, or the descrip-
tion, of any of these kinds. We might say that naming 
puts “an edge on things.” By creating a semantic border 
around a particular class of data it allows us to consider 
how that data can then be desirably linked and scored 
to other data and how our computational modeling can 
render useful models across our greater taxonomy. In 
a way it can be said that taxonomic part of the process 
limits the perceptive opportunities, while the ontologi-
cal process expands them. Why? Because the naming is 
intentionally a shorthand — the whole purpose is often to 
provide a mile-marker, stepping stone, arrow, or accepted 
agreement-point before proceeding to “what matters.” The 
taxonomic process is one of concluding. Conversely, the 
ontological process is one of opening. The study of the 
nature of things is essentially open-ended — it can never 
be fully resolved and very often requires one to regenerate 
the taxonomy. If we carry this to reductio ad absurdum we 
would simply apply a label to everything and communi-
cate no essential knowledge thereby, or study the nature of 
everything to the level of deep knowledge, but, absent any 
compact descriptive linguistic devices, be unable to com-

Pictorial: Semi-constrained

Pictorial: Constrained

Quantitative: Unconstrained

Quantitative: Constrained

Relational: Constrained

Symbolic: Unconstrained

Symbolic: Constrained

Relational: Semi-constrained

1.

2,

3.

4.

6.

7.

8.

5.

Figure 07: the eight patterns 
and four kinds of informative 
imagery

Figure 13: Former work by the author identified four 
areas of principal patterns that underscore all informative 
visual representation. These include: pictorial, quantitative, 
relational, and symbolic types (P,Q,R,S). Each of these, in 
turn, have two levels of rendering — either high-constraint 
(and therefore structurally identifying visual elements 
according to valued positions of a basemap), or semi-con-
strained, or unconstrained (where elements carry intrin-
sic value). Fine art based metapictorial rendering would 
always be of the Pictorial semi-constraining type. Design art 
based metapictorial imagery would be the same except for 
informative, not expressive, purpose. Design art metapicto-
rial imagery could also include aspects of quantitative and 
relational aspects as well. Synthetic metapictorial images, 
driving data through computational and algorithmic engines 
generate metapictorial imagery due to the sheer intensity of 
quantitative and relational densities. All three types utilize 
symbolic imagery in an annotated or navigational sense.

M
etapictorial im

agery renders all these layers into one synthetic com
posite
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municate any of that knowledge. 
Expanding the taxonomy through refine-

ment of types allows the ontological charac-
teristics to move deeply into the labels. As 
an example I will refer to an article by Ole 
Henrik Magga in which he discusses the 
Saami culture and through their “long, inti-
mate relationship with Arctic environment” 
their ontological familiarity with reindeer. 
(Diversity in Saami Terminology for Reindeer, 
Snow, and Ice, International Social Science 
Journal, March 2006). When this knowledge 
is expressed through the taxonomic labels 
of language it yields over one thousand ways 
to identify a specific reindeer quality. This is 
because factors of sex, age, shape, nature of 
coat, antlers, etc. are built into fairly compact 
expressions. The taxonomic effort is moving 
toward the ontological in this respect (until 
it would have a unique description for each 
reindeer). Big data from the collection side 
is an issue of taxonomic emphasis if only 
because the connecting points or sensors 
possesses technical conditions that, at least 
in the outset, are directed to certain kinds of 
collections. Once, these flow in volumetrically 
and cross-collectively they become more 
“ontological” in feel if not actuality.

The disadvantage for knowledge discov-
ery, then, is that the analysts bring with them 
expertise-focused labels. The systems inter-
faces they look at are imbued with taxonomic 
divisions that absolutely pre-categorize. 
(What seems to occur whenever we fill out a 
form with multiple choices in which we can-
not seem to answer with full truth, or accura-
cy, due to directed answers.  So we are forced 
to compromise accuracy). The solution is to 
design displays that allow the full dimensions 
of the data to be “fluid” and uncategorized in 
the first state. These can then be clustered by 
the users through the discovery process for 
the purpose of comparison. Then, in order 
to facilitate communications about findings, 
a taxonomy can be generated that calls upon 
a “fairly compact expressions” which yield 
insight into the discoveries.

Figure 15, 16: With a purely immersive interface model, as would be 
most desirable for metapictorial rendering, there are several drawbacks 
respecting collaboration, information capture, information sharing, and 
delivering intelligence to decision makers. These hypothetical interfaces 
address the concerns. In the series of illustrations shown in Figure 10 
the levels of hierarchy are moving along a kind of “y” axis of complexity; 
in these illustrations the logic is more of a “z” axis. Here, the magnitude 
of the visualization is being graphically rendered so that the findings can 
be captured. Once the transfer is made to these graphical captures the 
control aspects permit formal navigation and sharing. Elements and find-
ings can be extracted and constructed into models similar to Figure 11 
& 12, such presentations may be ideal for decision makers to review.
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PICTORIAL VS. DIAGRAMMATIC: where real, 
synthetic, virtual, or quasi-realistic kinds of 
images — those which are more cognitively 
“direct” — regain primacy over diagram,  
network, graphical, and symbolic imagery.

Readers will recognize that the thread of my 
argument leads to this: that I advocate that 
“real” imagery serves as an informative visual 
modeling agent of big data, and that this will 
strongly support knowledge discovery. Imag-
ery is cognitively direct, but graphical models 
of all kinds have served the role of isolating 
findings from nature. This in such a way as 
to bring powerful clarity through isolating 
discrete intelligence and displaying these 
(usually quantitatively) in revealing patterns. 

Let me pause here to refer to such a tax-
onomy, that I developed (with the insightful 
and never tiring assistance of Dr. Arno Klein) 
about twelve years ago which is pointedly 
germane to the idea of metapictorial imagery, 
(Figure 13).  This is worth reviewing in 
terms of the magnitude of density of image 
needed to extract greater intelligence from big 
data. I then argued and still do that all infor-
mative visual representations fall under only 
four systems. This coarse generalization may 
raise some objections, “only four?” After the 
analysis of many thousands of examples of 
information design, the logic supporting only 
four core types, or primary classes, was found 
to be sound. (This system was first developed 
during an academic-contractual project for 
the U.S. government, it was entitled the VT-
CAD system. This stood for  “Visualization 
Taxonomy for the Classification, Analysis, 
and Design” of Informative Visualization. The 
goals of the program were captured in the 
“CAD” moniker: to effectively and easily Clas-
sify many kinds of images, to provide a rapid 
Analyze collections, and to assist in Designing 
imagery and toolsets for high performance 
communication.) Each class is both structur-
ally (through its appearance) and logically 
(through its nature) defined. These are the 
four: Pictorial, Quantitative, Relational, and 
Symbolic. Pictorial patterns convey real and 

Figure 17, 18: Further to the examples on the previous page, these il-
lustrations address the potential need to move from immersive, gesture 
based, interactivity to a controlled interface. A parallel idea exists in 
reality (observations of nature) when it becomes necessary to capture and 
share findings. Users need to isolate (at true scale, or via magnification) 
that which they have observed. With synthetic, metapictorial imagery, 
the user moves though a world that needs to be addressed by layer and 
composition. Controls would all be carried within the viewing glasses of 
the user, or through some other augmenting toolset so no customization 
to the metapictorial model is required — however, as shown above, users 
could toggle to controllable layers within the metapictorial so that full 
collaboration and knowledge discovery findings could be rapidly shared.
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imagined imagery. Quantitative patterns are concerned 
with distances and numerical values. Relational patterns 
utilize cells and locations for containing and comparing 
elements. Symbol patterns exploit encoding and syntax. 
(please see the paper PIIMPAPER0103 [searchable online] 
for additional detail on this theory) Each pattern serves 
to extol both composition and comprehension of their 
respective, or applied, content types.

As we work on extensive bottom-up taxonomies of 
ways of looking at data, specifically big data, we see mul-
tiple discrete and hybrid examples of these four principal 
kinds of visualization. But the quantitative and relational 
are the yeoman. Graphs, charts, diagrams, tables, node-
and-link diagrams are looked to as best-practice ways 
of rendering big data. The last of these, node-and-link 
imagery has been particularly called upon for the task. 
Node-and-link and network diagramming, i.e., relational 
diagramming has grown in usage to the point of being the 
near default method for massive views of interconnec-
tions amongst data. The logic of “relational” is certainly 
appropriate to the nature of big data. 

By “pictorial, real, and imagery” however, it is not 
meant that such images are necessarily typical in appear-
ance. Images taken from nature, even discrete and highly 
subjective magnifications such as Karl Blossfeldt’s images 
in his work Urformen der Kunst (Art Forms in Nature) 
are still, essentially real, as would be fractal images and 
hyper-spectral images from GIS data — maps may go far 
into subjectivity and bespeak significant re-scaling, yet 
these two, are essentially real. The reality exists because of 
quantitative traceability. There are quantities behind the 
images and in that sense obey the physical laws behind 
them: quantities. Much big data adheres to these restric-
tions as well, but our concern for knowledge discovery 
shifts to relationals as the underlying driver, not quantities. 
This will generate images that are “real” but beyond what 
we would recognize in reality, more unlike real imagery 
generally, but possibly more like it in tiny areas of highly 
magnified specificity. 

PHYSICALLY  P ICTORIAL VS .  METAPICTORIAL: 

Where pictorial imagery, generally understood to observe 
laws of physics (even in representational modeling), give way 
to representational images that defy such standards as they 
become more abstracted or “surreal” in representation.

Let us look a bit more into this idea of projected quanti-
ties as reality and the “physically pictorial” vs. projected 

relationships as “metapictorial.” This brings us all the 
way back to Figure 01, which at the beginning of the 
paper was a good chunk to bite off and is, perhaps, more 
palatable now. First, a very quick retelling of the former 
paragraph: real images can be greatly distorted to convey 
some specific meaning, yet they are still tied to their root 
quantities (however distorted) and their root symbols 
(however subjectified). For example, a high-resolution 
satellite image of the Earth’s surface may be said to be real, 
accurate, and pictorial. If I take a napkin and draw upon it 
a map from point-a to point-b , showing perhaps a couple 
of lines representing several streets, I am evoking reality. 
The napkin sketch is neither accurate nor highly pictorial 
(it actually becomes network-like). It is still real. If we look 
at some classic David Hirschfeld caricatures we see  
horrendous distortion. These distortions provide insight-
ful cognitive gain about the nature of the artist’s subject at 
the cost of distortion from accuracy. The images are still 
real, and deeply behind those images (and of no concern 
to the viewers), is a physical reality of blood and tissue 
and brain and bone. The point is admittedly stretched, but 
there is a kind of natural big data behind the smallest, the 
most inaccurate, the most subjectified of imagery. Natural 
big data possesses a true superfice of the real images, sup-
ported by quantities, and further framed by physical laws, 
i.e. nature.
    Synthetic big data (on the other hand) can be visual-
ized in any number of ways. Many of these methods are 
simply derivatives of pictures anyway, yet, as with reality, 
signal captured “pictures” (or in non-visible examples, 
other forms of signal captures, audio, and vibratory, for 
example) render tangible representations. It is the picto-
rial, or signal captured, images that are at the top of the 
food chain, value wise. Behind the synthetic big data there 
will surely be numbers, but these numbers may be more 
aligned to relationals than quantities. This means that 
natural big  data is supported by quantities underscored by 
reliable physical “law.”

What then underpins the relationals that generate our 
metapictorial images? Is it akin to a reliable physical law? 
Yes, it would be in some ways akin, in that it would drive 
a great deal of the relational data on top of it, but no, it 
would not be reliable. This is because the underpinning 
rules for relationals are (at least as we understand them to-
day through economic and gaming theory, et al) unreliable 
and fairly inconsistent in the singular. They may bubble 
up to a slightly more reliably decipherable fuller con-
text. The underpinning equivalent to physically pictorial 
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would be the affinities, dependencies, and exploitations 
that establish the relationals. Therefore we have continual 
connecting, disconnecting, coming into existence, going 
out of existence — as well as highly varying temporal and 
magnitudinal fluidity in the “machine” that drives the rela-
tionals within big data. Therefore, the images so projected 
would not be deeply underwritten by physics law but by 
a kind of “law of the emotive.” 

Some renderings of big data do nearly build images 
that appear almost real, almost mimicking fractal imagery. 
As the volumes increase and we step back from visual ren-
derings of massive data sets we might begin to see clouds 
(real clouds, not mass-connected computing diagrams), or 
flowers, and myriad things that look like super-magnifica-
tion. This, I believe is the right step in terms of next-gen-
eration big data visualization. What will need to be added 
is fluid modeling of interstitial space, fluid taxonomic 
“gateways” and variable scoring systems for the affinities, 
dependencies, and exploitations amongst the data. This is 
the way that we can shift from a quantitative underpinning 
to a mathematically relational underpinning to the data 
sets and render next-generation visual representations of 
big data. These are also the kinds of visual representations 
that can capture interstitial space.

SYSTEMS COMPOSITION VS. ENGINE COMPOSITION: 

the character of renderings that are “map-like” and com-
posed of continuous fields of display, versus compositions 
that are compact, concise, self-reflective, and of closed 
contextual reference; and how these latter types can be “dis-
persed” through the former.

Due to the relational nature of big data there is another 
factor within our metapictorial world that needs to be 
considered. This will be an important feature, particularly 
if we want to turn our “awesome” pictures into usefully 
clustered things that can then be drilled into to yield 
expected, or unexpected, intelligence. When we look at a 
map of the earth we see continuance, every projection is a 
compromise because we are really looking at a sphere that 
must be distorted in order to view either by scale or other 
technology, or limitation.  
    Systems composition (as defined here) refers to 
this kind of data continuum — this is exactly the kind of 
endless surface one would expect from big data, par-
ticularly big data that is continually growing in size. So 
system composition is map-like; it keeps going. Relational 
imagery is made up of cells that either border one another 

(as in a spreadsheet) or are connected by node-and-links. 
Machines can quickly read spreadsheet cells, but more 
processing power is needed to read (or render) a node-
and link framework. The “walls” in a spreadsheet between 
the entries are merely 1D links; up-down, and left-right. 
Node-and-link imagery allows for compacting spread-
sheets that might minimal data entry for thousands of 
columns and dense data sets in one corner or another. 
By allowing the links to connect the nodes with greater 
subjectivity additional dimensions can be added and space 
can be saved. This results in a systems composition that 
can unfold endlessly through multiple dimensions. The 
same can be used for quantitative displays. If one took a 
spreadsheet of, say, massive size and reverse-projected 
it into a sphere, one would have a “engine composition”, 
which is here defined as an enclosed data model ( again 
compared, engine-like, in Figures 012  and map-like in 
Figure 11, and all the metaphysical models are map-like 
Figure 06, 08, series 09A —09C). When we  stand, 
observe, and move about the Earth we are in a systems 
composition; but from a great distance we see the planets 
as unique engine composition within a greater systems 
composition of the universe. When we look into Tuesday’s 
science section of the New York Times, we are met (often-
times) with lovely information graphics diagrams — these 
are engine compositions, all the information that needs to 
be presented is encased in the diagram. Engine composi-
tions are composed within frameworks that in rare, rather 
brilliant cases (such as, for example the periodic table 
of elements) the engines are beautifully self-referencing. 
These exist, again, in terms of certain physical sets in sci-
ence and multiple symbolic sets in the arts and metaphysi-
cal worlds (poems, paintings, wisdom literature).

Everything may somehow be related to everything, but 
we are most likely more interested in how certain things 
are specifically or generally related to certain other things. 
Any filter begins to turn a systems composition into an 
engine composition and when the last element of unre-
solved connectivity “snaps away” from the greater system 
successfully that engine can be investigated in totality 
for the knowledge it may reveal. As an aside this is why 
information designers often struggle greatly to build rep-
resentational models that contain (or ostensibly contain, 
or through some magnitude of scale contain) all of the 
data. Whatever that thing looks like is a control window 
into the knowledge. Compare this to an interface designer 
who often sets immediately about categorizing the data 
and then setting up links and control methods to retrieve 
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such-and-such a data type. One can see how the engine 
is a picture of not only the data but, at its superfice, an 
entryway into the data — whereas a group of controls, no 
matter how well designed, are merely symbolic gateways 
into the data. 

Nature also possess these kinds of engines, although 
they are dispersed throughout her system. Ant or bee col-
onies are kinds of engines, and we see the greatest model 
in our scanning the universe with a life generating engine, 
the sun, providing energy to a life receiving engine, the 
planet earth.. Of course, whole sets of algorithms need to 
be created that might render a homogenous system into 
a system full of disconnected engines within the system. 
These then would be reconfigurable to generate new scat-
ter-worlds of revised engines within remodeled systems. 

Comparison is one of the most rapidly deployable 
tools of analysis and visual representations within an en-
gine/systems modeling environment is a logical approach 
to providing this capability. This completes our tour of the 
modeling recommendation for big data representation. It 
mimics our natural world in its first and second and third 
levels; the universe, to the sun and earth within that space, 
to the pictures (detailed captures) of the world. It goes a 
different way at the deeper levels of relational and emotive 
for synthetic big data (as compared to the quantitative and 
the physical for natural big data).

CONTROL FIELD VS. IMMERSIVE FIELD: how controls 
of the views can be modified by ostensibly external control 
methods, or through gesture based, immersive methods: re-
lating to how we move through real worlds (intrinsic) versus 
libraries of knowledge (derived).

Gesture-based control has already taken the field in con-
sumer products. The idea of clicking here, here, or here to 
call up the information we are looking for is less desirable 
then gesturing through fields of information and ferreting 
out what we are interested in finding. The journey is far 
from complete — many gesture based controls are still just 
controls, merely a bit more “hip” in execution. Let us con-
sider three levels of data/knowledge retrieval form poten-
tial informative sources. The first is a non-controlled view, 
the next,field-controlled views (or stage-controlled views), 
the last immersive. In conjunction with this we should con-
sider what may be called “core” or “adjacent” renderings.

Non-controlled views are mostly 2D renderings, or 
possibly 3D renderings in some cases (such as the famed 
dioramas at New York’s Museum of Natural History). They 

may be static “single-shot” renderings, or temporal as with 
moving-picture imagery — film and video.  All the data 
that is available is at the same time available, or through-
time available. With same time availability the viewer 
moves him or herself through and around the model like 
a living cursor (as eye-tracking software might reveal). 
Information graphics fit into this first tier, but I would 
more desirably include information maps. Within infor-
mation maps there is a heightened value to the use of the 
informative by merely moving in any direction around or 
across the surface. One’s eyes, supported by the ability to 
physically move and visualize and process the data, are the 
toolsets that renders the informative representation. This 
can be particularly well understood through very large 
scale maps and visualizations. Ben Shedd of Princeton 
University deals with the idea of “exploding the frame” 
where one is not confronted with the frame or border of 
the image because the image is large enough to extend 
beyond the areas of peripheral vision. So, the viewer, 
cursor-like, moves about to immerse themselves in what is 
spread out before them. 

Big data could work through such a rendering but 
issues of technical capability and cost of rendering might 
be significant. One can see how such renderings bring us 
back to similitude to how we move about in the actual 
world; these renderings are in controlled spaces so issues 
of speed and comprehension (in addition to the physi-
cal infrastructure) emerge. Such large renderings do not 
exclude the idea of engine composition as previously 
discussed: there is no size limit for an engine composition. 

The Eames’ film Powers of Ten is both a movie and an 
engine composition (which is something of a feat), still a 
classic after nearly forty years. With non-controlled engine 
composition the viewer learns by choice; the intelligence 
in such models is instilled through a careful consideration 
of content, through the structural logic of where con-
tent will be rendered singularly and in context to other 
content. This is supported by the visual manifestation 
respecting design issues of shape, border, color, luminos-
ity and myriad other aesthetic considerations. These are 
usually fairly hard to make well because all the information 
must be present through one of two means: comprehensive 
integration or successful storyboard, but when these are 
present the results, being well made, are highly informative.

Controlled-views, driven by the art and science of 
traditional interactivity, permit users to modify render-
ings through any number of controls external to that 
rendering. The stage, or field, can be practically endless 
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in its possibilities (if the data is dynamic then of course it 
is endless in possibilities). Concerns about real estate are 
a major factor in the design of these interfaces because 
every rendering is by default a compromise, the viewer is 
always not seeing something else. 

The other issue with the staged view is the user, gener-
ally, has to know where they want to go, or even more real 
estate must be utilized to show them where to go, and how 
to control this procedure. For this reason the idea of intu-
itiveness is a crucial factor in the design of most toolsets 
with stage views. Originally all the controls of the stage 
were outside the view in question and users worked from  
their keyboard. Mouse controls permitted areas within the 
staged view to be clicked; this added a sense of “immer-
sion” but through an off-hand method. With gesture based 
touch-screen capabilities the users can now render many 
alternative views by interacting with the current view; this 
then is a kind of segue into full immersiveness. Almost 
all the user interfaces today are controlled view systems 
which, at best, are compromises for generating knowledge 
discovery views from big data. This is because of the lega-
cy of the kinds of visualizations generated, combined with 
the ways by which these visualizations were navigated.

 Geospatial renderings (i.e. real imagery), network 
diagrams, graphs, spreadsheets, time series renderings, 
bar charts, and scatterplots all have navigational languages 
that are more-or-less specific to the tasks at hand. Geo-
spatial renderings are very well advanced GIS tools have 
well developed immersive navigation capabilities. Scaling, 
sliding, accessing annotation, as well as deeper capabilities 
such as adding and deleting layers of metadata or run-
ning time sequences have received a great deal of attention 
from developers primarily due to US Government interest 
and funding to advance such capabilities. These kinds of 
navigational non-intrusive rendering capabilities will be 
very easily adapted to the types of imagery that could be 
developed for big data metapictorial imagery as well.

The future is the most direct immersive environment 
possible; where the concept of “gestures” is extended 
to hand, voice, eye tracking, facial expression, even 
thought directives. Such high levels of sensitivity will 
require very advancing capabilities for correcting the 
navigational process, reversing, and developing pro-
cedure improvements through machine learning and 
feedback loops. Equally important will be non-intrusive 
capturing of the relevant findings.

In many ways the entire world of interface design and 
control can be seen as the middle stage between the: non-

navigational, unidirectional world of the non-controlled, 
yet very high quality informative visual representations 
of the physically pictorial examples of the past. As well as 
the and the fully navigational, all spectrum metapictorial 
imagery that will be possible in future. These conceptu-
ally immersive renderings, driven by an “understanding” 
of the affinities, dependencies, and exploitations models 
of relational synthetic big data could provide the kinds of 
knowledge discovery that solve mega-problems or prevent 
harm to humans, ecosystems, and economic stability.

To conclude this section it behooves us to discuss the 
idea of adjacencies. These are all the elements of informa-
tion that are not intrinsic to the Systems composition vs. 
Engine composition, instead they are supplemental yet 
provide critical guidance to effectively navigating any 
kind of informative visualization. A full paper is available 
on this idea from PJIM (Parsons Journal for Information 
Mapping) publications (Complications and Adjacencies An 
Organizing Logic for Information Graphics, Anderson, Bev-
ington; Volume II Issue 3, Summer 2010). For our purposes 
the following is worth considering — 

“The composing of intelligible patterns from the noise 
of raw data is a hallmark of a good information designer. 
The most successful examples extract and present essential 
relationships in a coherent manner while limiting the ob-
trusiveness of accessory relationships. Effective results are 
self-evident whereby the information graphic is absorbed 
by the mind holistically. Such clarity often belies the 
intense efforts involved: like a baton race, all the work is 
concentrated to a point just before being passed on to the 
next participant in the informational relay. To this end, the 
designer applies a pattern or grid to position all the inter-
relational data fields. We call this process stacking: the 
mechanism for creating a beneficial complication whereby 
users see and understand holistically, which we consider 
to be cognitively superior to linear presentations. The 
success of layered compositions depend on the appropri-
ateness of the basemap (pictorial, relational, quantitative, 
or symbolic) and the quality of the designer’s integration. 
What can be correlated should be correlated. What cannot 
be inter-relationally correlated, such as titles, labels, meta-
data, etc., should not interfere with the stacking grid since 
they introduce noise. Any “noisy” element is better brought 
“outside” the main grid and handled as an adjacency.” 

It would probably be useful if such adjacent informa-
tion was handled by parallel devices (such as say, some-
thing like the Google Glass, which displays information 
through a prism device to the upper right of the right 
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eye’s peripheral vision [until one glances up to read the 
display]) This would take full advantage of other kinds 
of augmented viewing devices that play their role into a 
totally device-free capabilities. 

Our bias then is full immersive capabilities with 
augmented systems for adjacent information — it is the 
formatting of the delivery of the adjacency components 
that would require customizing user-to-user while the core 
immersion into the metapictorial would be universal. In 
this manner collaborative usage to any scale of users would 
be possible.

SYMBOLIC VS. SIGNIFIED: understanding the distance 
from the core signified thing and how cultures share, or 
create new meanings, as distance of time or space move the 
viewer away from the signified elements — and the use of 
symbols as compacted elements of pictorial things.

For this, the tenth factor discussed in our sequence of bias 
toward conditional splits we are challenged with the fun-
damental idea of communicating findings from the results 
of knowledge discovery. The challenge is well recognized: 
what might get lost in translation and how do we miti-
gate this loss of clarity? Again we are going to stand the 
simplification game, somewhat, upon its head. Informa-
tion designers are (or should be) obsessed with clarity and 
simplicity as a mode of reducing noise, focusing attention 
to key aspects, providing exactly the right hierarchy of 
informational delivery, and supplementing the presenta-
tion with adjacencies that return the subject to the most 
effective pathway to understanding. 
    Intriguingly, this is often accomplished with a very 
high level of concision. Such concision takes the form 
of symbols and high levels of simplification and “round-
ing off ” of smaller exceptions in favor of making critical 
comparisons of the larger exceptions. Transit maps are a 
fair example of this, where the richly complex, dirty, noisy, 
tactile potency of railway lines, ties, steel, and concrete, 
are all  reduced to uniform, brightly colored lines that run 
beautifully parallel and occasionally take 90 (or 45)degree 
turns over maps of minimalist polygons and precision 
notation. Lovely. In truth, this is radical symbolic simplic-
ity of what the transit systems are. And, it is effective, so 
much that Harry Beck’s London Underground map of the 
mid 1930s has permeated the design of most subway and 
transit line maps in use in the world today (although the 
printed paper versions are in rapid decline.) 

    The issue of the signifier and the signified grows as the 
users of increasingly complex systems are more and more 
distant from the decision-makers and findings must be 
converted form expert jargon-rich language to actionable, 
simple intelligence. Another factor that appears to be on 
the rise in institutions with ever increasing workforces is a 
propensity for decision-makers that have not moved “up 
through the ranks” but “across ranks.” This means that there 
is less of shared work-culture and viewpoint variance.  
    The translation of the “findings medium” into the 
“reporting medium” also adds complication; standard-
ized reporting mechanisms, designed to assist in the rapid 
dissemination of findings are often woefully inadequate in 
accurately capturing the subtleties of knowledge discov-
ery. What results from all these potential misalignments 
might not be the advantages of simplicity, but what I will 
call “simplexity.” By this I mean ineffective simplifica-
tion resulting in a loss of the critical message in favor of a 
message that satisfies the need — but not the condition of 
knowledge discovery.

Further, the current cultures working across the vast 
range of disciplines supported by big data require a kind 
of integration that defies a uniform understanding of 
symbol, metaphor, and signifiers. The answer here may be 
the capture of the essential story directly from the source 
imagery. This builds upon the use of the tools that support 
the immersive direct user within the metapictorial render-
ings. Knowledge discovery within this framework can be 
replayed as would be a film, and as with any film that is 
viewed in a language that is not one’s own it can be played 
with the appropriate sub titles. In this case the subtitles 
can possess a very rich symbol set that clearly conveys. This 
could come as close, say, as a book well translated from the 
original tongue; not perfect, but far better that re-transla-
tions that scrap all that was originally understood through 
a model that coincides more with reporting than informing.

DEFICIENCIES OF METAPICTORIAL MODELING FOR BIG DATA

The section previous touches upon multiple issues that 
will be of concern should a successful, highly informative 
model of synthetic metapictorial imagery be developed 
for big data informative visual representations. In es-
sence the whole idea of synthetic metapictorial imagery 
is that it will mimic the experience of moving about, as 
sentient beings, in the real world.
    The same problems that face scientists and design-
ers in the real world, will face the engineers, scientists, 
designers, analysts, and innovators in the synthetic 
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metapictorial world. Namely, how do I handle this infor-
mation? How do I capture my unfolding findings? share 
it? how do I work with others in its extraction? how do 
build simplified models of composite findings? The main 
concern here is to essentially move back down from a 
fully immersive world to a controlled one. 
    By comparing Figures 9a – 9C to Figures 16, 
–19 an answer emerges. figures 9a – 9c unfold the 
potential effectiveness of metapictorial modeling by den-
sity and degree across a range. Akin to a melodic process 
across time. However, the logic of collaboration requires 
a kind of harmonic requirement, deriving value from 
within a framework of time. Figures 16, –19 show how 
the granularity of a synthetic model can be immediately 
“downsampled” to graphical models that can handle all 
the tasks which those who are tasked with knowledge 
discovery can turn to, must turn to, when they step out-
side their singular investigative world and share findings. 
Additional description here would be fully redundant to 
the captions on pages 19 and 20.

CONCLUSION

Synthetic, human-centric qualitative big data is at the 
threshold of mimicking the kinds of “natural” data that 
can be derived from physical quantitative phenomena. 
This is so because the interstitial space of qualitative data 
is rapidly decreasing as the gaps of incompleteness are 
just beginning to fill (this parallels the history of modern 
science as it reveals and explains nature, thus decreasing 
the unknown and formerly numinous). The advances 
in scientific knowledge came primarily from direct or 
augmented observation. These observation are revealed 
through pictorial, real imagery, or signal emission and 
capture (alternative kinds of “imagery”). These images, 
in turn, have been found to possess quantities (numbers) 
within discernible patterns (it may be argued that every 
other type of map, graph, chart, diagram, table or symbol 
is a kind of reduction or extraction from these realistic 
images).

Further, these higher-level, realistic images, as driven 
by quantities and underpinned by physical laws, are 
reliable and repeatable (to the extent that this is under-
stood within the limited number of dimensions that can 
be observed and calculated concurrently). I argue that 

big data may also understood through exactly the same 
means: image observation. However, computational for-
mulas, and the rendering algorithms derived from these 
formulas might, for big data missions, not be developed 
to directly address quantities and physics (as with natural 
investigations), but instead address the connectivity and 
relations within the larger scope of big data — thus cap-
turing a softer series of variables as determined by more 
experimental taxonomies and ontologies. For, unlike 
quantities which reveal the underlying physical properties 
in nature, the relationals in human-generated big data may 
instead be underpinned by forces of affinities, dependen-
cies, and exploitations (a kind of physics of social-intercon-
nectedness). 

The images generated from such renderings (which I 
refer to as metapictorials) might allow significant levels 
of knowledge discovery. This is particularly the case if 
the renderings are large-scale and fully immersive and 
designed without any need for customization. Custom-
ization can be handled through augmenting tools that are 
“outside” these metapictorial renderings (forgoing cus-
tomization means immediate large scale user-pools and 
collaboration). The findings from those who explore such 
metapictorial worlds may be immediately shared with 
others via the same kinds of augmentation tools which 
permit translation at the recipients level of expertise and 
interest. (By toggling between immersive, gesture-based 
interactivity to control-based graphic renderings.) In es-
sence, a cycle of Natural Pictorial Imagery, to Quantities 
underpinned by physics; — to MetaPictorial Imagery, to 
Relationals underpinned by affinities, dependencies, and 
exploitations, can be understood as the visual rendering 
pathway allowing a far richer exploitation of big data 
resources. The high potential for knowledge extraction 
from such metapictorials may support significant prob-
lem solving as we continue to amass big data collections. 
Such metapictorials may also point to areas that are most 
profitable for further data collection, ever enhancing the 
cycle of knowledge discovery.
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