
PIIM IS A RESEARCH AND DEVELOPMENT
FACILITY AT THE NEW SCHOOL

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

68 Fifth Avenue
New York, NY 10011

THE PARSONS INSTITUTE
FOR INFORMATION MAPPING

212 229 6825
piim.newschool.eduPIIM

I. Methodologies

1.1 Model View Controller (MVC)

Model-View-Controller (MVC) is a classic design pattern
often used by applications that need the ability to maintain
multiple views of the same data. The MVC pattern hinges
on a clean separation of objects into one of three catego-
ries—models for maintaining data, views for displaying
all or a portion of the data, and controllers for handling
events that affect the model or view(s).

Because of this separation, multiple views and control-
lers can interface with the same model. Even new types
of views and controllers that never existed before can
interface with a model without forcing a change in the
model design.1

1.2 Orthogonality

The basic idea of orthogonality is that things that are not
related conceptually should not be related in the system.
Parts of the architecture that really have nothing to do
with the other, such as the database and the UI, should not
need to be changed together. A change to one should not
cause a change to the other.2

Web 2.0
System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

Successful use of the pattern isolates business logic
from user interface considerations, resulting in an applica-
tion where it is easier to modify either the visual appear-
ance of the application or the underlying business rules
without affecting the other.

It is common to split an application into separate
layers that run on different computers: presentation (UI),
domain logic, and data access. In MVC the presentation
layer is further separated into view and controller.3

1.3 “The DRY Principle” (Don’t Repeat Yourself)

DRY says that every piece of system knowledge should
have one authoritative, unambiguous representation. Ev-
ery piece of knowledge in the development of something
should have a single representation. A system’s knowledge
is far broader than just its code. It refers to database sche-
mas, test plans, the build system, even documentation.

Given all this knowledge, why should you find one
way to represent each feature? The obvious answer is, if
you have more than one way to express the same thing, at
some point the two or three different representations will
most likely fall out of step with each other. Even if they
don’t, you’re guaranteeing yourself the headache of main-
taining them in parallel whenever a change occurs. And
change will occur. DRY is important if you want flexible
and maintainable software.4

1.4 Agile Software Development

Agile Software Development refers to a group of software
development methodologies that are based on similar
principles. Agile methodologies generally promote: A
project management process that encourages frequent
inspection and adaptation; a leadership philosophy that
encourages team work, self-organization and account-
ability; a set of engineering best practices that allow for
rapid delivery of high-quality software; and a business
approach that aligns development with customer needs
and company goals.5

1.5 Agile Manifesto

http://www.agilemanifesto.org/

Individuals and interactions over processes and •	
tools.

Working software over comprehensive documenta-•	
tion.

Customer collaboration over contract negotiation.•	

Web 2.0 System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

PIIM RESEARCH
PUBLISHED OCTOBER 30, 2008
[page 2]

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

PIIM

Responding to change over following a plan, that •	
is, while there is value in the items on the right, we
value the items on the left more.

Customer satisfaction by rapid, continuous deliv-•	
ery of useful software.

Working software is delivered frequently (weeks •	
rather than months).

Working software is the principal measure of •	
progress.

Even late changes in requirements are welcomed.•	

Close, daily cooperation between business people •	
and developers.

Face-to-face conversation is the best form of com-•	
munication (Co-location).

Projects are built around motivated individuals, •	
who should be trusted.

Continuous attention to technical excellence and •	
good design.

Simplicity.•	

Self-organizing teams.•	

Regular adaptation to changing circumstances.•	

2. Open API’s and Models

for Web 2.0 Technologies

The historic trend for web-aware enterprise applications
was to use expensive application servers, proprietary
systems and cumbersome programming languages such
as Microsoft .NET (ASP, VB) and Sun Microsystems Java
(J2EE, Struts). With the Web 2.0 revolution creating fully
functional, stable, lightweight, cost effective and scalable
enterprise applications is possible using open-source
frameworks, open standards and widely popular program-
ming languages. Open protocols such as SOAP utilizing
messaging patterns such as Remote Procedure Calls (RPC)
provide an XML messaging framework for WSDL and other
XML datasets are the core foundation of most modern web
services applications. As Web 2.0 applications grow and
scale it is important that certain development principles
are followed and maintained using architectural software

models such as Representational State Transfer (REST)
for distributed media and resources, Rapid Development
Methodology (RDM) where changes to the system are
made available for use without building and deployment
cycles, restarts or reloading of key components, Model
View Controller (MVC) which isolates business logic from
the user interface allowing for (code) changes in on layer
without the need to (rewrite code) change other layers and
reduction of coupling through the DRY principle and or-
thogonality which eliminates propagation; modified code
or structure in one layer should not cause changes in other
layers of the application.

2.1 XML: Extensible Markup Language

XML is a general-purpose specification for creating
custom markup languages. DOM is an interface-oriented
Application Programming Interface that allows for naviga-
tion of the entire document as if it were a tree of “Node”
objects representing the document’s contents. A DOM
document can be created by a parser, or can be generated
manually by users (with limitations). Data types in DOM
Nodes are abstract; implementations provide their own
programming language-specific bindings. Pull parsing
treats the document as a series of items, which are read in
sequence using the iterated design pattern. This allows for
writing of recursive-descent parsers in which the structure
of the code performing the parsing mirrors the structure
of the XML being parsed, and intermediate parsed results
can be used and accessed as local variables within the
methods performing the parsing, or passed down (as
method parameters) into lower-level methods, or re-
turned (as method return values) to higher-level methods.

Another form of XML Processing API is data binding,
where XML data is made available as a custom, strongly
typed programming language data structure, in contrast
to the interface-oriented DOM. XML supports Unicode,
allowing almost any information in any written human
language to be communicated. It can represent common
computer science data structures: records, lists and trees.

XML's self-documenting format describes structure
and field names as well as specific values. The strict syntax
and parsing requirements make the necessary parsing
algorithms extremely simple, efficient, and consistent.
XML is heavily used as a format for document storage and
processing, both online and offline. It is based on inter-
national standards. It can be updated incrementally. It
allows validation using schema languages such as XSD and
Schematron, which makes effective unit-testing, firewalls,
acceptance testing, contractual specification and software
construction easier. The hierarchical structure is suitable

Web 2.0 System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

PIIM RESEARCH
PUBLISHED OCTOBER 30, 2008
[page 3]

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

PIIM

for most (but not all) types of documents. It is platform-
independent, thus relatively immune to changes in tech-
nology. Forward and backward compatibility are relatively
easy to maintain despite changes in DTD or Schema.6

2.2 REST (Representational State Transfer)

Representational State Transfer is a style of software ar-
chitecture for distributed hypermedia systems such as the
World Wide Web. REST refers to a collection of network
architecture principles, which outline how resources are
defined and addressed.

REST provides improved response time and reduced
server load due to its support for the caching of representa-
tions. It improves server scalability by reducing the need to
maintain session state. This means that different servers can
be used to handle different requests in a session. It requires
less client-side software to be written than other approach-
es, because a single browser can access any application and
any resource. REST depends less on vendor software and
mechanisms, which layer additional messaging frameworks
on top of HTTP and provides equivalent functionality when
compared to alternative approaches to communication.
REST does not require a separate resource discovery mecha-
nism, due to the use of hyperlinks in representations.

REST provides better long-term compatibility and
evolvability characteristics than RPC. This is due to: The
capability of document types such as HTML to evolve
without breaking backwards- or forwards-compatibility.
The ability of resources to add support for new content
types as they are defined without dropping or reducing
support for older content types.7

2.3 RESTful Web Services Characteristics

Characteristics of RESTful Web Services include:

Client-Server:•	 a pull-based interaction style: con-
suming components pull representations.

Stateless:•	 each request from client to server must
contain all the information necessary to under-
stand the request, and cannot take advantage of
any stored context on the server.

Cache:•	 to improve network efficiency responses
must be capable of being labeled as cacheable or
non-cacheable.

Uniform interface:•	 all resources are accessed with
a generic interface (e.g., HTTP GET, POST, PUT,
DELETE).

Named resources•	 : the system is comprised of re-
sources, which are named using a URL.

Interconnected resource representations:•	 the rep-
resentations of the resources are interconnected
using URLs, thereby enabling a client to progress
from one state to another.

Layered components:•	 intermediaries, such as
proxy servers, cache servers, gateways, etc, can be
inserted between clients and resources to support
performance, security, etc.8

2.4 SOAP

SOAP is a protocol for exchanging XML-based messages
over computer networks, normally using HTTP/HTTPS.
SOAP forms the foundation layer of the web services
protocol stack providing a basic messaging framework
upon which abstract layers can be built. Using SOAP over
HTTP allows for easier communication through proxies
and firewalls than previous remote execution technology.
SOAP is versatile enough to allow for the use of different
transport protocols. The standard stacks use HTTP as a
transport protocol, but other protocols are also usable
(e.g., SMTP). SOAP is platform independent and language
independent. 9

2.5 WSDL: Web Service Description Language

WSDL is an XML format for describing network services as
a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.
The operations and messages are described abstractly, and
then bound to a concrete network protocol and message
format to define an endpoint. Related concrete endpoints
are combined into abstract endpoints (services). WSDL
is extensible to allow description of endpoints and their
messages regardless of what message formats or network
protocols are used to communicate, however, the only
bindings described in this document describe how to use
WSDL in conjunction with SOAP 1.1, HTTP GET/POST,
and MIME.

WSDL is often used in combination with SOAP and
XML Schema to provide web services over the Internet.
A client program connecting to a web service can read
the WSDL to determine what functions are available on
the server. Any special data types used are embedded in
the WSDL file in the form of XML Schema. The client can
then use SOAP to actually call one of the functions listed
in the WSDL.10

Web 2.0 System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

PIIM RESEARCH
PUBLISHED OCTOBER 30, 2008
[page 4]

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

PIIM

3. AJAX: Presentation Tier (UI)

3.1 Example AJAX Presentation Layer Dataflow

A typical •	 AJAX application utilizes the Presentation
Layer (UI) to create dynamic interaction within a
Internet Browser without the need to reload ele-
ments.

AJAX•	 uilizes JavaScript and other programming
languages to create a stateful and dynamic applica-
tion

AJAX•	 allows for the display of Rich Media and in-
teraction with the content without having to reload
the browser

Content is requested and delivered using •	 HTTP
requests

All the processing of data is done on the Applica-•	
tion Level leaving the Presentation Layer to just
display content.

3.2 AJAX Overview

AJAX (asynchronous JavaScript and XML), or AJAX, is a
group of interrelated web development techniques used
for creating interactive web applications or rich Internet
applications. With Ajax, web applications can retrieve
data from the server asynchronously in the background
without interfering with the display and behavior of the
existing page. Data is retrieved using the XMLHttpRe-

quest object or through the use of Remote Scripting in
browsers that do not support it. XHTML and CSS for
presentation the Document Object Model for dynamic
display of and interaction with data XML and XSLT for
the interchange and manipulation of data, respectively
the XMLHttpRequest object for asynchronous commu-
nication. JavaScript is used to bring these technologies
together.

In many cases, the pages on a website consist of much
content that is common between them. Using traditional
methods, that content would have to be reloaded on
every request. However, using Ajax, a web application
can request only the content that needs to be updated,
thus drastically reducing bandwidth usage and load time.
The use of asynchronous requests allows the client’s Web
browser UI to be more interactive and to respond quickly
to inputs, and sections of pages can also be reloaded indi-
vidually. Users may perceive the application to be faster or
more responsive, even if the application has not changed
on the server side.

The use of Ajax can reduce connections to the server,
since scripts and style sheets only have to be requested
once. An Ajax framework is a framework that helps to
develop web applications that use Ajax, a collection of
technologies used to build dynamic web pages on the cli-
ent side. Data is read from the server or sent to the server
by JavaScript requests. However, some processing at the
server side may be required to handle requests, such as
finding and storing the data. This is accomplished more
easily with the use of a framework dedicated to process
Ajax requests. The goal of the framework is to provide the
Ajax engine described below and associated server and
client-side functions.11

4. Ruby on Rails: Application Tier

4.1 Example Application Layer Data flow

In an example Web •	 2.0 application utilizing AJAX
and Ruby on Rails, a user enters a record through
the client UI.

After the record is complete the user clicks submit.•	

This action sends a •	 HTTP request though the AJAX
interface engine to the web server.

The content of the note is formatted to the proper •	
XML specification and is passed along.

Web 2.0 System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

PIIM RESEARCH
PUBLISHED OCTOBER 30, 2008
[page 5]

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

PIIM

The web server dispatches the request to the Ruby •	
on Rails application server.

The Rails controller processes the request and a •	
standard routine is executed for updating a record.

The Rails controller then updates the record in the •	
Local Cache Storage and a notification of the CRUD
is returned to the controller.

The Rails controller also executes a routine to •	
the streams display, which updates the record via
the web server and the browser AJAX engine noti-
fying the user that the record has been updated
and saved.

A secondary background process is executed in the •	
Rails controller that uses REST/SOAP to connect to
other external web services to update the master
record in a master database.

Updating the Local Cache Store’s record first and •	
displaying the record to the browser reduces
latency as the secondary update to the external
database can be processed as needed in scheduled
batches or over a slower Internet connection.

4.2 Ruby on Rails Overview

Ruby on Rails (RoR) uses Model View Controller archi-
tecture implementing DRY principles and orthogonality
utilizing separation of presentation (view and controller),
domain logic, and data access. RoR is an open-source
object-oriented programming language based on Ruby.
The core of Rails provides a full set of development and
deployment tools and supports the meta-programming
method of scaffolding for building database software
applications. A simple web server (WEBrick) and build
system (Rake) are included with Rails. By including these
common tools with the Rails system, a basic development
environment is in effect provided with all versions of the
software. Ruby on Rails is separated into various pack-
ages, namely ActiveRecord, ActiveResource, ActionPack,
ActiveSupport and ActionMailer. Apart from standard
packages, developers can make plugins to extend existing
packages.

Additionally the Rails scaffolding provides a frame-
work for unit and functionality testing including mock
object and database modifications that are processed
out-of-the-container as not to impact a deployed applica-
tion. One of the stongest features of the Rails framework
is its extensive support for SOAP XML messaging, RESTful
web services and JavaScript (AJAX). Rails initially utilized
SOAP for web services but now primarily uses RESTful
web services.

AJAX is integrated into the RoR framework provid-
ing the Prototype and script.aculo.us libraries for fast and
flexible development. Many other languages like Java are
cumbersome to program and don’t fully support AJAX
natively. A key component to any Web 2.0 applications is
database support and connectivity. RoR provides all the
need components and libraries to support all major data-
bases both open-source and proprietary.

The benefits of using the RoR framework as opposed
to other standard frameworks for scalable enterprise
applications are many. RoR is a single stack framework
providing and including components for the data access
layer to the presentation layer. RoR is designed to be a
self-contained horizontal and veritical thread. Each thread
is independent and does not share data or resources with
other Rail threads or other services such as database and
web server processes. Rails is scalable with cheap and
inexpensive hardware and can utilize network distributed
memory cache applications such as memcached scaling
every layer of the application framework.

RoR follows a zero configuration model requir-
ing only several directives for per database and/or web
service routing without the problems of coupling between

Web 2.0 System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

PIIM RESEARCH
PUBLISHED OCTOBER 30, 2008
[page 6]

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

PIIM

application layers and environments. RoR is intended to
emphasize Convention over Configuration (CoC), and
the agile programming principle of Don’t repeat yourself
(DRY). “Convention over Configuration” means a devel-
oper only needs to specify unconventional aspects of the
application. Built into the RoR framework is the concept
of deployment environments. RoR provides three environ-
ments for production, testing and development. These
environments are ruled by strict separation as to not affect
each other including there respective database backend.
Switching between environments can be done easily with
a master switch. New environments can be added with
little configuration.

Ruby provides a reduced code footprint over .NET and
Java applications. Some developers have noted a reduc-
tion of code that is six to ten times less than the standard
Java application. This decrease in code allows for rapid
prototyping and development without being held back
by thousands of lines of code. This also reduces the time
needed for new team members to understand the code
base allowing for a reduced learning curve of the software
system.12

5. MySQL: Database Tier

5.1 Example Local Cache Store Dataflow

A user requests a record via the Presentation Layer •	
through the AJAX engine.

The web server directs the request to the Applica-•	
tion Layer (Ruby on Rails).

The Rails controller executes the request and sends •	
a request to the Local Cache Store.

The Local Cache Store responds with two possible •	
messages

If the record is not currently in the Local Cache •	
Store because the record is new or that the record
has not been active for a set period of time, then
the Rails controller must request the record
through the external web services to the master
databases. The controller then processes the record
into and writes it to the Local Cache Store.

If the record is in the Local Cache Store, the Rails •	
controller receives the record.

When the record is received by the Rails control-•	
ler the record is sent to the streams display to be
displayed by the AJAX engine in the Presentation
Layer.

When a update to the record occurs, the Local •	
Cache Store record is updated first prior to updat-
ing the master record via external web services to
the master database.

5.2 tMySQL Overview

MySQL is a relational database management system •	
(RDBMS). It runs as a server providing multi-user
access to a number of databases. MySQL is enter-
prise ready and offers many features including:

A broad subset of •	 ANSI SQL 99, as well as exten-
sions.

Cross-platform support.•	

Stored procedures, triggers, cursors and updatable •	
Views.

True •	 VARCHAR support

X/Open •	 XA distributed transaction processing
(DTP) support; two phase commit as part of this,
using Oracle’s InnoDB engine.

Independent storage engines (MyISAM for read •	
speed, InnoDB for transactions and referential in-
tegrity, MySQL Archive for storing historical data
in little space).

Transactions with the InnoDB, •	 BDB and Cluster
storage engines; savepoints with InnoDB.

SSL•	 support.

Query caching.•	

 Sub-•	 SELECTs (i.e. nested SELECTs).

Replication with one master per slave, many slaves •	
per master, no automatic support for multiple mas-
ters per slave.

Web 2.0 System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

PIIM RESEARCH
PUBLISHED OCTOBER 30, 2008
[page 7]

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

PIIM

Full-text indexing and searching using MyISAM •	
engine. Embedded database library.

Partial Unicode support (•	 UTF-8 sequences longer
than 3 bytes are not supported; UCS-2 encoded
strings are also limited to the BMP).

ACID•	 compliance using the InnoDB, BDB and
Cluster engines.

Shared-nothing clustering through MySQL Clus-•	
ter.13

Notes

1 eNode, Inc., "Markup Language" (2002), http://www.
enode.com/x/markup/tutorial/mvc.html.

2 Bill Venners, “Don’t Live with Broken Windows: A
Conversation with Andy Hunt and Dave Thomas, Part I”
(March 3, 2003), http://www.artima.com/intv/fixit.html;
Venners, "Orthogonality and the DRY Principle: A Conver-
sation with Andy Hunt and Dave Thomas, Part II” (March
10, 2003), http://www.artima.com/intv/dry.html.

3 Trygve Reenskaug, "Models-Views-Controllers"
(December 10, 1979), http://heim.ifi.uio no/~trygver
/1979/mvc-2/1979-12-MVC.pdf; Wikipedia, "Model-
View-Controller," http://en.wikipedia.org/wiki/Model_
view_controller.

4 Wikipedia, "Don’t Repeat Yourself," http://
en.wikipedia.org/wiki/Don%27t_repeat_yourself.

5 Andrew Hunt and David Thomas. The Pragmatic
Programmer: From Journeyman to Master (Addison-Wes-
ley, October 1999); Wikipedia, "Agile Software Develop-
ment," http://en.wikipedia.org/wiki/Agile_software.

6 Wikipedia, “XML,” http://en.wikipedia.org/wiki/
XML.

7 Stefan Tilkov, “A Brief Introduction to REST”
(December 10, 2007), http://www.infoq.com/articles/
rest-introduction; Tilkov, “Addressing Doubts about REST”
(March 13, 2008), http://www.infoq.com/articles/tilkov-
rest-doubts; Wikipedia, "Representational State Transfer,"
http://en.wikipedia.org/wiki/Representational_State_
Transfer.

8 Roger L. Costello, “Building Web Services the REST
Way” (2002), http://www.xfront.com/REST-Web-Services.
html.

9 Wikipedia, “SOAP,” http://en.wikipedia.org/wiki/
SOAP.

10 Erik Christensen, Francisco Cubera, Greg Meredith,
and Sanjiva Weerawarana, “Web Services Description
Language (WSDL) 1.1” (March 15, 2001), http://www.
w3.org/TR/wsdl.

Web 2.0 System Architecture Guidelines:
Overview and Source Documentation
Benjamin Bacon, PIIM

PIIM RESEARCH
PUBLISHED OCTOBER 30, 2008
[page 8]

© 2008 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

PIIM

11 Jesse James Garrett, “Ajax: A New Approach to
Web Applications” (February 18, 2005), http://www.adap-
tivepath.com/ideas/essays/archives/000385.php; Chris-
topher Merrill, “Performance Impacts on AJAX Develop-
ment: Using AJAX to Improve Bandwidth Performance
of Web Applications” (January 15, 2006), http://www.
webperformanceinc.com/library/reports/AjaxBandwidth/;
Wikipedia, “AJAX,” http://en.wikipedia.org/wiki/AJAX.

12 Rick Bradley, “Evaluation: moving from Java to
Ruby on Rails for the CenterNet rewrite” (2006), http://re-
write.rickbradley.com/pages/moving_to_rails.html; Hunt,
The Pragmatic Programmer; Wikipedia, “Ruby on Rails,”
http://en.wikipedia.org/wiki/Ruby_on_rails.

13 Wikipedia, “MySQL,” http://en.wikipedia.org/wiki/
MySQL.

Bibliography

Burbeck, Steve. “Applications Programming in Small-
talk-80: How to use Model-View-Controller.” 1987,
1992. http://st-www.cs.uiuc.edu/users/smarch/st-docs/
mvc.html.

Fielding, Roy Thomas. “Architectural Styles and the Design
of Network-based Software Architectures.” 2000. http://
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Fitzpatrick, Brad. Distributed Caching with Memcached.
August 1, 2004. http://www.linuxjournal.com/ar-
ticle/7451.

Fowler, Martin. “Inversion of Control Containers and
the Dependency Injection Pattern.” January 23, 2004.
http://www.martinfowler.com/articles/injection.html.

Fowler, Martin. “Using an Agile Software Process with
Offshore Development.” July 8, 2006. http://www.
martinfowler.com/articles/agileOffshore.htmlinfowler.
com/articles/injection.html.

Fowler, Martin. “The New Methodology (Agile).” Decem-
ber 13, 2005. http://martinfowler.com/articles/new-
Methodology.html.

Wikipedia. Virtual Database EMR. http://en.wikipedia.org/
wiki/Virtual_Database_EMR.

Pautasso, Cesare. Zimmermann, Olaf. Leymann, Frank.
“RESTful Web Services vs. ‘Big’ Web Services: Making
the Right Architectural Decision.” 2008. http://www.
jopera.org/files/www2008-restws-pautasso-zimmer-
mann-leymann.pdf; http://www.jopera.org/docs/pub-
lications/2008/restws.

Raymond, Eric. The Art of Unix Programming. Addison-
Wesley, October 2003.

Riehle, Dirk. “A Comparison of the Value Systems of
Adaptive Software Development and Extreme Pro-
gramming: How Methodologies May Learn From
Each Other Appeared in Extreme Programming
Explained.” G. Succi and M. Marchesi, ed. Boston.
Addison-Wesley, 2001.

Stephens, Matt. Rosenberg, Doug. “Extreme Programming
Refactored: The Case Against XP.” Apress, Sept. 2008.

